49. Semi-groups of Nonlinear Operators on Closed Convex Sets

By Jiro WATANABE Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M. J. A., April 12, 1969)

Let *H* be a real or complex Hilbert space, whose inner product and norm are denoted by \langle , \rangle and | |. Let $D \subseteq H$ and let $\{T_t; t \ge 0\}$ be a semi-group of mappings of *D* into itself. For $K \subseteq H$ and $x \in H$, let $C_K(x)$ be the strong closure of the set $\{r(z-x); r \ge 0, z \in K\}$. If *K* is a closed subset of *D* and if $T_tK \subseteq K$ for $t \ge 0$, it is obvious that we have

$$A_0 x = s - \lim_{h \downarrow 0} \frac{1}{h} (T_h x - x) \in C_K(x), x \in \partial K$$
(1)

whenever the strong limit exists. We are interested in the converse problem: under what conditions on $\{T_t\}$ and K does (1) imply $T_tK\subseteq K$, $t\geq 0$. We consider this converse problem when $\{T_t\}$ is a strongly continuous semi-group of contractions and K is a closed convex set.¹⁾ Our result is given in Theorem 1 below. Theorem 1 enables us to prove Theorem 2 which gives a sufficient condition on a (nonlinear) dissipative operator that it be a strong generator of a semi-group of contractions on a closed convex set. Finally we apply Theorem 2 to prove Theorem 3 which shows the existence of a sequence of semigroups with continuous infinitesimal generators approximating a given semi-group of contractions on a closed convex set.

We begin with a simple lemma which we shall need later.

Lemma 1. Let $u \in H$ and K be a closed convex subset of H. Then there exists one and only one element $v \in K$ such that |u-v|= inf {|u-z|; $z \in K$ }. Moreover, we have the inequality

$$\operatorname{Re}\langle y, u-v\rangle \leq 0, \ y \in C_{\mathcal{K}}(v). \tag{2}$$

Proof. We shall prove the inequality (2). For $y \in C_K(v)$ we can find a sequence $r_n \ge 0$ and a sequence $z_n \in K$ such that $y = s - \lim_{n \to \infty} r_n(z_n - v)$. Since $v + c(z_n - v) \in K$ for $0 \le c \le 1$, it follows that

 $|u-v-c(z_n-v)| \ge |u-v|, \quad 0 \le c \le 1.$

This gives

$$\operatorname{Re}\langle z_n - v, u - v \rangle \leq 0.$$

¹⁾ It is to be noted that (1) does not necessarily imply $T_tK \subseteq K$, $t \ge 0$, if we do not assume that T_t is a contraction for $t \ge 0$.

Hence we have

$$\operatorname{Re}\langle y, u-v\rangle = \lim \operatorname{Re}\langle r_n(z_n-v), u-v\rangle \leq 0.$$

Theorem 1. Let C be a subset of H, and K a closed convex subset of C. Let $\{T_t; t \ge 0\}$ be a strongly continuous semi-group of contractions on C with strong generator A_0 . If $\partial K \subseteq D(A_0)$ and $A_0 x \in C_K(x)$ for all $x \in \partial K$, then we have $T_t x \in K$ for all $x \in K$ and all $t \ge 0$.

Proof. Suppose that there is an $x_1 \in K$ such that $T_b x_1 \in C \setminus K$ for some b > 0. Then there is an $a \in [0, b)$ such that $T_a x_1 \in \partial K$ and $T_t x_1 \in C \setminus K$ whenever $t \in (a, b]$, since $T_t x_1$ is continuous in t and K is closed. Let $x_0 = T_a x_1$ and $\delta = b - a$. Thus $\delta > 0$. We set $u(t) = T_t x_0$.

Since K is closed and convex, there exists, for $0 \le t \le \delta$, a unique element $v(t) \in \partial K$ satisfying $|u(t) - v(t)| = \inf \{|u(t) - z|; z \in K\}$. We define $\rho(t) = |u(t) - v(t)|$. It is clear that $\rho(0) = 0$ and $\rho(t) > 0$ whenever $0 < t \le \delta$. Since $\rho(s) \le |u(s) - v(t)|$ for $s, t \ge 0$, we find

 $\rho(s) - \rho(t) \le |u(s) - v(t)| - |u(t) - v(t)| \le |u(s) - u(t)|.$ Hence we obtain

$$|\rho(s) - \rho(t)| \le |u(s) - u(t)|$$
 for $s, t \ge 0$. (3)

Since $x_0 \in D(A_0)$, u(t) is in $D(A_0)$ for $t \ge 0$ and u is Lipschitz continuous (see [1], Lemma 1.1). Hence, by (3), ρ is Lipschitz continuous and, since $\rho(0) < \rho(\delta)$, there is a $t^* \in (0, \delta)$ such that u and ρ are differentiable at t^* and $\frac{d\rho}{dt}(t^*) > 0$. We now define $r(t) = |u(t) - v(t^*)|$

for $t \ge 0$. It is clear that $\rho(t^*) = r(t^*)$ and $\rho(t) \le r(t)$ for $t \ge 0$. Therefore, we have

$$\frac{dr^2}{dt}(t^*) = \frac{d\rho^2}{dt}(t^*) = 2\rho(t^*)\frac{d\rho}{dt}(t^*) > 0.$$
(4)

Using Lemma 1 and the dissipativity of A_0 , we obtain

 $\frac{dr^2}{dt}(t^*) = 2 \operatorname{Re} \langle A_0 u(t^*), u(t^*) - v(t^*) \rangle$

 $\leq 2 \operatorname{Re} \langle A_0 u(t^*) - A_0 v(t^*), u(t^*) - v(t^*) \rangle \leq 0,$

which contradicts the inequality (4). The proof of Theorem 1 is complete.

For $x, y \in H$, we denote by (x, y) an element of the Cartesian product $H \times H$. If $A \subseteq H \times H$, then D(A) denotes the set of all $x \in H$ such that $(x, y) \in A$ for some $y \in H$. For $x \in D(A)$, Ax denotes the set of all $y \in H$ such that $(x, y) \in A$. If Ax consists of a single element for all $x \in D(A)$, then A is called a function. A subset A of $H \times H$ is said to be dissipative if for all (x_1, y_1) and (x_2, y_2) in A

$$\operatorname{Re}\langle x_1-x_2, y_1-y_2\rangle \leq 0.$$

Definition. Let C be a subset of H and A a dissipative subset of $C \times H$. A is said to be

- (a) C-maximal dissipative if A is not properly contained in any dissipative subset of $C \times H$;
- (b) functionally C-maximal dissipative if A is a function which is not properly contained in any dissipative function with domain in C.
- If A is a C-maximal dissipative set, then for $x \in D(A)$ we have $Ax = \{y \in H ; \operatorname{Re} \langle x' x, y' y \rangle \leq 0$ for all $(x', y') \in A\}$

which is a closed convex set. Hence there is a unique element $A^{\circ}x \in Ax$ such that $|A^{\circ}x| \leq |y|$ for all $y \in Ax$. Thus we have defined the function A° with domain $D(A^{\circ}) = D(A)$, which will be called the minimal cross-section of A (see [1]).

Example. Let $H = R^2$. Let $x_1 = (1, 1)$, $x_2 = (-1, 1)$, $x_3 = (-1, -1)$, $x_4 = (1, -1)$ and $C = \{x_1, x_2, x_3, x_4\} \subset H$. For $h \ge 0$, we define

$$A_h x_1 = (-\infty, -h] \times (-\infty, h], \qquad A_h x_2 = [-h, \infty) \times (-\infty, -h],$$

$$A_h x_3 = [h, \infty) \times [-h, \infty) \quad \text{and} \quad A_h x_4 = (-\infty, h] \times [h, \infty).$$

Then A_h is C-maximal dissipative subset of $H \times H$ and we have $A_h^0 x_1 = (-h, 0)$, $A_h^0 x_2 = (0, -h)$, $A_h^0 x_3 = (h, 0)$ and $A_h^0 x_4 = (0, h)$. Hence, if $h > k \ge 0$, then $A_h^0 \subset A_k$ and $A_h^0 \ne A_k^0$ (cf., [1], Theorem 2.4 (b)).

The next theorem gives a sufficient condition on a dissipative operator that it be the strong generator of a semigroup of contractions on a closed convex set.

Theorem 2. Let K be a closed convex subset of H and let A be a subset of $K \times H$ with the following properties:

- (i) A is K-maximal dissipative and A^o is functionally K-maximal dissipative;
- (ii) D(A) is dense in K;

No. 4]

(iii) $\partial K \subseteq D(A)$ and $A^{\circ}x \in C_{\kappa}(x)$ for all $x \in \partial K$.

Then there exists a uniquely determined strongly continuous semigroup of contractions on K such that its strong generator is A^{0} .

Proof. Let B be an H-maximal dissipative set containing A. Then there is a strongly continuous semi-group S of contractions on D(B) such that its strong generator is B^0 (see [1], Theorem 1). Let $T = \{T_t; t \ge 0\}$ be a strongly continuous semi-group of contractions which is a maximal extension of S. Then it is clear that the domain C of T is closed. Therefore, condition (ii) together with $D(A) \subseteq C$ will imply $K \subseteq C$. Let G be the strong generator of T so that G is a dissipative extension of B^0 . Since A is a K-maximal dissipative subset of B, B^0 is an extension of A^0 . Thus G is an extension of A^0 . Now it follows from (i) that A^0 is the restriction of G to $K \cap D(G)$. Hence, by (iii) and Theorem 1, we have $T_t K \subseteq K$ for all $t \ge 0$. We have proved the existence of a strongly continuous semi-group on K with strong generator A^0 .

221

J. WATANABE

To prove the uniqueness, let $U = \{U_t; t \ge 0\}$ and $V = \{V_t; t \ge 0\}$ be two strongly continuous semi-groups of contractions on K such that A^0 is the strong generator of U as well as of V. Then, for every $x \in D(A)$, $U_t x$ and $V_t x$ are absolutely continuous on $[0, \infty)$ and we have $U_t x \in D(A)$, $V_t x \in D(A)$ for all $t \ge 0$ and $\frac{d}{dt} U_t x = A^0 U_t x$, $\frac{d}{dt} V_t x = A^0 V_t x$ for almost all $t \ge 0$ (see [1], Theorem 1.4). Therefore, it follows from the dissipativity of A^0 that $U_t x = V_t x$ for $x \in D(A)$ and $t \ge 0$. Hence, by (ii), we have $U_t x = V_t x$ for all $x \in K$ and all $t \ge 0$.

Remarks. (a) In Theorem 2, (i) and (iii) do not imply (ii) generally. For example, let $H = R^1$, $K = [0, \infty)$ and f be a real-valued, continuous and decreasing function defined on [0, 1) such that $f(0) \ge 0$ and $\lim_{x \ne 1} f(x)$ $= -\infty$. Let A be a subset of $K \times H$ defined as follows:

$$Ax = \begin{cases} [f(0), \infty) & \text{if } x = 0, \\ \{f(x)\} & \text{if } 0 < x < 1, \\ \phi(\text{empty set}) & \text{if } x \ge 1. \end{cases}$$

Then A satisfies (i) and (iii) in Theorem 2. However, D(A) is not dense in K.

(b) In Theorem 2, if K is the closed convex hull of ∂K , then (i) and (iii) imply (ii). This implication is proved as follows. In the proof of Theorem 2, we showed the existence of a semi-group on K with strong generator A^0 using (ii) once for all to obtain $K \subseteq C$. We note that C is closed and convex (see [5]). Therefore, if K is the closed convex hull of ∂K , $\partial K \subseteq D(A) \subseteq C$ implies $K \subseteq C$. Hence there is a semi-group on K such that its strong generator is A^0 . Then $D(A^0)$ is dense in K (see [5], [3]).

As a simple application of Theorem 2 we shall prove the following theorem.

Theorem 3. Let K be a closed convex subset of H and let $\{T_t; t \ge 0\}$ be a weakly continuous semi-group of contractions on K. For a fixed positive real number h, we define

$$A_h x = \frac{1}{h} (T_h x - x), \qquad x \in K.$$

Then there is a strongly continuous semi-group of contractions on K such that its strong generator is A_h .

The proof of Theorem 3 is based on the following lemma.

Lemma 2. Let $K \subseteq H$ and let A be a dissipative function defined on K satisfying the following conditions:

- (i) There is a positive real number r such that
 - $x + cAx \in K$ for $x \in K$ and $0 \le c \le r$,
- (ii) $w \lim_{c \downarrow 0} A(x + cAx) = Ax$ for $x \in K$.

Then, for any dissipative set B containing A, we have

 $|Ax| \le |y|$ for $x \in K$ and $y \in Bx$.

Proof. Let $x \in K$ and $y \in Bx$. We set

 $y_c = A(x + cAx) \qquad \text{for } 0 < c \le r.$

It follows from $A \subseteq B$ and the dissipativity of B that

$$\operatorname{Re}\langle y_{c}-y, Ax\rangle = \frac{1}{c}\operatorname{Re}\langle y_{c}-y, (x+cAx)-x\rangle \leq 0.$$

Then we have

 $\operatorname{Re} \langle |Ax|y_c - |y|Ax, Ax \rangle \leq \operatorname{Re} \langle |Ax|y - |y|Ax, Ax \rangle \leq 0.$ Therefore it follows from (ii) that

 $|y||Ax|^2 \ge \lim_{a \to a} \operatorname{Re} \langle |Ax|y_c, Ax \rangle = |Ax|^3.$

Proof of Theorem 3. A_h is a dissipative function on K satisfying the conditions (i) and (ii) in Lemma 2 with r=h. Let B be a Kmaximal dissipative set containing A_h . Then it follows from Lemma 2 that $B^0x = A_hx$ for $x \in K$. Hence we have $B^0x \in C_K(x)$ for $x \in K$. Since D(B) = K, the proof of Theorem 3 is complete by Theorem 2.

References

- [1] M. G. Crandall and A. Pazy: Nonlinear semi-groups of contractions and dissipative sets (to appear).
- [2] T. Kato: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan, 19, 508-520 (1967).
- [3] —: A note on the differentiability of nonlinear semigroups (to appear).
- [4] Y. Kōmura: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19, 493-507 (1967).
- [5] —: Differentiability of nonlinear semigroups (to appear).
- [6] K. Yosida: Functional Analysis. Springer-Verlag (1966).