77. On the Structure of Certain C*-Algebras ## By Tadashi Huruya (Comm. by Kunihiko Kodaira, M. J. A., May 12, 1969) A C*-algebra A is said to be *elementary* if A is isomorphic to the C*-algebra LC(H) of the totality of compact operators on a Hilbert space H. The dual \hat{A} of any elementary C*-algebra A consists of a single element (cf. 4.1.5 in [1]), conversely any separable C*-algebra is elementary if its dual consists of a single element [5], where the dual \hat{A} is the set of all unitary equivalence classes of irreducible representations* of A. A C*-algebra A is called a CCR-algebra if $\pi(A) \subset LC(H_{\pi})$ and a GCR-algebra if $\pi(A) \cap LC(H_{\pi}) \neq (0)$ (cf. [6]), for all irreducible representations π of A, where H_{π} denotes the representation space of π . In this paper, we present some results on the structure of *GCR*-algebras whose dual consists of a finite number of elements. Lemma 1. If A is a separable C*-algebra and Card $\hat{A} \subseteq \aleph_0$, then A is of type I. Proof. Let π be an irreducible representation of A. If $\pi(A) \cap LC(H_{\pi})=(0)$, then, by [2], there is a family of mutually inequivalent irreducible representations of A which has the cardinal number of continuum. This fact is contrary to our assumption. Therefore we have $\pi(A) \cap LC(H_{\pi}) \neq (0)$ and, by [4] and [6], A is a C*-algebra of type I. **Lemma 2.** Let $(A_i)_{i \in I}$ be a family of non-zero C*-algebras and let A be the product C*-algebra of A_i 's. Then we have $$\hat{A} = \bigcup\limits_{i \in I} \left\{ ho_{\pi} | \pi \in \hat{A}_i ight\}$$ if and only if the index set I is a finite set, where ρ_{π} is a representation $(x_i)_{i\in I} \rightarrow \rho_{\pi}((x_i)_{i\in I}) = \pi(x_i)$ of A. Proof. Suppose that (1) is satisfied. Let B be the restricted product C*-algebra of A_i 's (cf. 1.9.14 in [1]). Then B is a closed two-sided ideal of A. Assume that $B \subseteq A$, then there is an irreducible representation ν such that $\nu(B) = (0)$. By the assumption, there is an irreducible representation π of A_i , such that $\nu = \rho_{\pi}$. Then we have $(0) = \nu(B) = \rho_{\pi}(B) = \pi(A_i) = \rho_{\pi}(A) = \nu(A)$. This is a contradiction. Therefore B = A. Since A_i is non zero, I is a finite set. Conversely, let I be a finite set. Each A_i is a closed two-sided ideal of A. Let π be an irreducible representation of A. Since I is a finite set, there is an index $i \in I$ such that $\pi(A_i) \neq (0)$. Let $j \in I$ be any ^{*)} Throughout this paper, we mean by an irreducible representation a non-trivial one. index other than i, and let x_i and x_j be any elements of A_i and A_j , respectively. Then we have $$(\pi \mid A_i)(x_i)\pi(x_j) = \pi(x_ix_j) = \pi(0) = 0.$$ Since $\pi \mid A_i$ is an irreducible representation of A_i and $H_{\pi \mid A_i}$ is H_{π} , we have $\pi \mid A_j = 0$, so $\pi = \rho_{\pi \mid A_j}$. Therefore (1) is satisfied. Lemma 3. Let A be a C*-algebra which has a composition series $\{I_j\}_{j=0,1,2,\cdots,n(<\infty)}$ (an increasing family of closed two-sided ideals I_j of Asuch that $I_0=(0)$ and $I_n=A$) satisfying the following condition: if $0 \le j$ $\leq n-1$, I_{j+1}/I_{j} is *-isomorphic to a product C*-algebra of a finite number, say n_j , of elementary C*-algebras. Then \hat{A} consists of $\sum_{j=1}^{n-1} n_j$ elements. **Proof.** By Lemma 2 and 2.11.2 in [1], \hat{A}^{I_1} consists of n_0 elements and $\hat{A} - \hat{A}_{I_0}^{I_1} = \hat{A}_{I_1}$, where \hat{A}^I denotes the set of elements π of \hat{A} such that $\pi(I) \neq (0)$. We assume 0 < k < n and suppose that $$\hat{A} - \bigcup_{0 \le j \le k-1} \hat{A}_{Ij}^{Ij+1} = \hat{A}_{Ik}.$$ Then Then $$\hat{A} - \bigcup_{0 \leq j \leq k} \hat{A}_{I_j^{j+1}}^{I_{j+1}} = \hat{A}_{I_k} - \hat{A}_{I_k^{k+1}}^{I_{k+1}} = (\hat{A} - \hat{A}^{I_{k+1}}) \cap \hat{A}_{I_k} \\ = \hat{A}_{I_{k+1}} \cap \hat{A}_{I_k} = \hat{A}_{I_{k+1}}.$$ Making use of the mathematical induction, we have $$\hat{A} - \bigcup_{0 \leq j \leq n-1} \hat{A}_{I_j^{j+1}}^{I_{j+1}} = \hat{A}_{I_n}, \quad \text{so} \quad \hat{A} = \bigcup_{0 \leq j \leq n-1} \hat{A}_{I_j^{j+1}}^{I_{j+1}}.$$ Now $\hat{A}_{I_j}^{I_j+1}$ consists of n_j elements, for $\hat{A}_{I_j}^{I_j+1}$ can be identified with (I_{j+1}/I_j) (cf. 2.11.2 in [1]). This completes the proof. Lemma 3 raises the following Proposition. If a C*-algebra A has a composition series $\{I_{\rho}\}_{0 \leq \rho \leq \alpha}$ (an increasing family of closed two-sided ideals I_{ρ} of A indexed by the set of ordinals less than or equal to an ordinal α , such that $I_0=(0)$, $I_{\alpha} = A$ and if $\rho \leq \alpha$ is a limit ordinal then $\bigcup_{\rho' < \rho} I_{\rho'}$ is dense in I_{ρ}) satisfying the following condition: $$I_{a+1}/I_a$$ is elementary for all ρ . Then Card $\hat{A} = Card \alpha$. **Proof.** Since $I_0 = (0)$, I_1 is elementary. Therefore $\hat{A}_{I_0}^{I_1}$ consists of an element π_0 and $\hat{A} - (\pi_0) = \hat{A}_{I_1}$. Suppose that $\hat{A}_{I_2^{\ell+1}}^{I_2^{\ell+1}}$ consists of an element π_{ε} and $$\hat{A} - \bigcup_{0 \le \eta \le \xi} \pi_{\eta} = \hat{A}_{I_{\xi+1}}$$ for every ξ such that $0 \le \xi < \nu \le \alpha$. Then, in case ν is an isolated number, we have $$\hat{A} - \bigcup_{0 \leq \eta \leq \nu-1} \pi_{\eta} = \hat{A}_{I_{\nu}}.$$ Since $I_{\nu+1}/I_{\nu}$ is elementary, $\hat{A}_{I_{\nu}}^{I_{\nu+1}}$ consists of an element π_{ν} and we have $$\hat{A} - \bigcup_{0 \leq \eta \leq \nu} \pi_{\eta} = \hat{A}_{I_{\nu+1}}.$$ In case ν is a limit number, suppose that there is an element π in $\hat{A}-\bigcup_{i}\pi_{i}$. Suppose that there is an ordinal number $\xi< u$ such that $I_{\varepsilon} \subset \operatorname{Ker} \pi$. For each element ρ of $\hat{A} - \bigcup_{0 \le \eta \le \varepsilon} \pi_{\eta}$, we have $\rho \mid I_{\varepsilon+1} = 0$. Since $\hat{A} - \bigcup_{0 \le \eta \le \varepsilon} \pi_{\eta} \subset \hat{A} - \bigcup_{0 \le \eta \le \varepsilon} \pi_{\eta}$, π belongs to $\hat{A} - \bigcup_{0 \le \eta \le \varepsilon} \pi_{\eta}$, so $\pi \mid I_{\varepsilon+1} = 0$, hence $I_{\varepsilon} \subset \operatorname{Ker} \pi$ is a contradiction. Therefore $$\bigcup_{0 \le \gamma < \nu} I_{\gamma} \subset \operatorname{Ker} \pi, \quad \text{so} \quad I_{\nu} \subset \operatorname{Ker} \pi.$$ Thus, when $\nu \ne \alpha$, we have $$\hat{A}_{I_{\nu}^{+1}}^{I_{\nu+1}} = (\pi_{\nu}) \quad ext{and} \quad \hat{A} - \bigcup_{0 \leq \eta \leq \nu} \pi_{\eta} = \hat{A}_{I_{\nu+1}},$$ and when $\nu = \alpha$ $$\hat{A} - \bigcup_{0 \leq \eta < \nu} \pi_{\eta} = \phi$$. Consequently, if $0 \le \xi < \alpha$, then $\hat{A}_{I_{\xi}^{\ell+1}} = (\pi_{\xi})$, $\hat{A} - \bigcup_{0 \le \eta \le \ell} \pi_{\eta} = \hat{A}_{I_{\xi+1}}$ and $\hat{A} = 1 + 2$. Thus, we have $\hat{A} = \bigcup_{n \in \mathbb{Z}} \pi_n$. Thus we have Card $\hat{A} = \text{Card } \alpha$. Theorem. A necessary and sufficient condition for a C*-algebra A to be a CCR-algebra whose dual A consists of a finite number, say n, of elements is that A is *-isomorphic to a product C*-algebra of n elementary C*-algebras. **Proof.** Suppose that A is a CCR-algebra and \hat{A} consists of n elements $\pi_1, \pi_2, \dots, \pi_n$, and let P_i be the kernel of π_i . These primitive ideals P_1, P_2, \dots, P_n are distinct maximal closed two-sided ideals of A (cf. 4.1.11 in [1]). Let $P_{i_1}, P_{i_2}, \dots, P_{i_{n-1}}$ be n-1 distinct elements of Prim (A), the ideal structure space with the Jacobson topology. Since A is a CCR-algebra, Prim (A) is a T_1 -space (cf. 3.1.4 in [1]). Therefore $\{P_{i_1}, P_{i_2}, \dots, P_{i_{n-1}}\}$ is a closed set of Prim(A), so $$\{P \in \operatorname{Prim}(A) | P_{i_1} \cap P_{i_2} \cap \cdots \cap P_{i_{n-1}} \subset P\} = \{P_{i_1}, P_{i_2}, \cdots, P_{i_{n-1}}\}.$$ Hence $$P_{i_1} \cap P_{i_2} \cap \cdots \cap P_{i_{n-1}} \neq (0)$$ and $$P_{i_1} \cap P_{i_2} \cap \cdots \cap P_{i_{n-1}} \subset P_m (m \neq i_1, i_2, \cdots, i_{n-1}).$$ Therefore $P_1 \cap P_2 \subset P_3$, and by the maximality of P_3 we have $P_1 \cap P_2$ $+P_3=A$. Thus any element x of P_1 may be written in the form of a sum y+z where $y \in P_1 \cap P_2$ and $z \in P_3$. Then $z=x-y \in P_1$, hence $P_1 \subset P_1$ $\cap P_2 + P_1 \cap P_3$. On the other hand $P_1 \cap P_2 + P_1 \cap P_3 \subset P_1 \cap (P_2 + P_3) \subset P_1$. Accordingly, we have $P_1 = P_1 \cap P_2 + P_1 \cap P_3$. Consequently, $A = P_2 \cap P_3$ $+P_1=P_2\cap P_3+P_1\cap P_2+P_1\cap P_3$. Suppose that for some k(1 < k < n-1)we have $$A = \sum_{i_1,i_2,\cdots,i_k} P_{i_1} \cap P_{i_2} \cap \cdots \cap P_{i_k}$$ where the sum runs through all sets $\{i_1, i_2, \dots, i_k\}$ which can be formed from k elements of $\{1, 2, \dots, k+1\}$. Now, for any such set $\{i_1, i_2, \dots, i_k\}$, $P_{i_1} \cap P_{i_2} \cap \cdots \cap P_{i_k}$ is a *CCR*-algebra, and its ideal structure space Prim $(P_{i_1} \cap P_{i_2} \cap \cdots \cap P_{i_k})$ consists of the following elements: $$(P_{i_1} \cap P_{i_2} \cap \cdots \cap P_{i_k}) \cap P_m (1 \leq m \leq n, m \neq i_1, i_2, \cdots, i_k).$$ Therefore, these elements are all maximal closed two-sided ideals of $P_{i_1} \cap P_{i_2} \cap \cdots \cap P_{i_k}$ (cf. 4.1.11 in [1]), and by the same argument which we used just now, we have $$P_{i_1} \cap P_{i_2} \cap \dots \cap P_{i_k} = P_1 \cap P_2 \cap \dots \cap P_{k+1} + P_{i_1} \cap P_{i_2} \cap \dots \cap P_{i_k} \cap P_{k+2}.$$ Therefore $$A = \sum_{i_1, i_2, \dots, i_{k+1}} P_{i_1} \cap P_{i_2} \cap \dots \cap P_{i_{k+1}},$$ where the sum runs through all sets $\{i_1, i_2, \dots, i_{k+1}\}$ which can be formed from k+1 elements of $\{1, 2, \dots, k+2\}$. Making use of the mathematical induction, we have $$A = \sum_{i_1, i_2, \dots, i_{n-1}} P_{i_1} \cap P_{i_2} \cap \dots \cap P_{i_{n-1}}$$ where the sum runs through all sets $\{i_1,i_2,\cdots,i_{n-1}\}$ which can be formed from n-1 elements of $\{1,2,\cdots,n\}$. On the other hand $P_1\cap P_2\cap\cdots\cap P_n=(0)$ (cf. 2.7.3 in [1]). Hence A is *-isomorphic to the product C*-algebra of n C*-algebras $(P_{i_1}\cap P_{i_2}\cap\cdots\cap P_{i_{n-1}})$. Consider an element $x\in P_{i_1}\cap P_{i_2}\cap\cdots\cap P_{i_{n-1}}$ such that $\pi_m(x)=0$ where $m\neq i_1,i_2,\cdots,i_{n-1}$, Then $x\in P_1\cap P_2\cap\cdots\cap P_n$, so x=0. Hence the mapping $x\to\pi_m(x)$ from $P_{i_1}\cap P_{i_2}\cap\cdots\cap P_{i_{n-1}}$ onto $LC(H_{\pi_m})$ is a *-isomorphism, namely $P_{i_1}\cap P_{i_2}\cap\cdots\cap P_{i_{n-1}}$ is an elementary C*-algebra. Consequently, A is *-isomorphic to a product C*-algebra of n elementary C*-algebras. The sufficiency of the condition is easily seen by Lemma 2. Corollary. A C*-algebra A is a GCR-algebra whose dual \hat{A} consists of a finite number, say n, of elements, if and only if A has a composition series $\{I_j\}_{j=0,1,\cdots,m(<\infty)}$ such that each I_{j+1}/I_j is *-isomorphic to a product C*-algebra of n_j elementary C*-algebras where $\sum_{j=0}^{m-1} n_j = n$. **Proof.** This corollary follows from Lemma 3 and the preceding theorem plus the following facts: - 1) A C*-algebra A is a GCR-algebra if and only if A has a composition series $\{I_{\rho}\}_{0 \leq \rho \leq \alpha}$ such that each $I_{\rho+1}/I_{\rho}$ is a CCR-algebra (cf. 4.3.4 in [1]). - 2) $(I_{\rho+1}/I_{\rho})^{\hat{}}$ can be identified with $\hat{A}_{I_{\rho}}^{I_{\rho}+1}$ (cf. Proof of Lemma 3 for the notation of $A_{I_{\rho}}^{I_{\rho}}$). - 3) $\hat{A}_{I_{\rho}^{\rho+1}}^{I_{\rho'+1}} \cap \hat{A}_{I_{\rho'}^{\rho'+1}}^{I_{\rho'+1}} = \emptyset$ for any pair ρ , $\rho'(\rho \neq \rho')$ and $\hat{A} = \bigcup_{0 \leq \rho < \alpha} \hat{A}_{I_{\rho}^{\rho+1}}^{I_{\rho+1}}$. Remark 1. In the above corollary, the case m=1 and $n_0=n$ appears if and only if A is a CCR-algebra whose dual consists of n elements (cf. the above theorem). 2. We can restate the case m=1 and $n_0=n=1$ of the above corollary as follows: A C*-algebra is elementary if and only if it is a GCR-algebra whose dual consists of a single element. On the other hand, simple C*-algebra of type I is elementary [3] and vice versa (4.1.7 in [1]). Consequently the following three statements on a C*-algebra A are equivalent: - (i) A is elementary, - (ii) A is of type I and \hat{A} consists of a single element, - (iii) A is of type I and simple. - 3. If A is a separable C*-algebra with $\operatorname{Card} \hat{A} \subseteq \aleph_0$, \hat{A} is a GCR-algebra by Lemma 1. Therefore the dual \hat{A} of a separable C*-algebra A consists of a finite number n of elements, if and only if A has the same composition series that we gave in the preceding corollary. This result is an extension of the proposition in [5] which was referred to in the beginning of this paper. ## References - [1] J. Dixmier: Les C*-algèbres et leurs représentations. Gauthier-Villars, Paris (1964). - [2] —: Utilisation des facteurs hyperfinis dans la théorie des C*-algèbres. C. R. Acad. Sci. Paris, 258, 4184-4187 (1964). - [3] -: Simple C*-algebras. Lecture Note. - [4] J. Glimm: Type I C*-algebras. Ann. Math., 73, 572-612 (1961). - [5] A. Rosenberg: The number of irreducible representations of simple rings with no minimal ideals. Amer. J. Math., 75, 523-530 (1953). - [6] S. Sakai: On type I C*-algebras. Proc. A. M. S., 18, 861-863 (1967). - [7] J. Tomiyama: A remark on representations of CCR-algebras (to appear).