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1. Introduction. We consider the following fourth order partial
differential equation
( 1 ) 32y /t-- (1 + o(3y /3x)’)3y / 3x- fl3’y / 3x4,
where and are positive constants and p-1, 2, ..., which is deeply
connected with the study of the anharmonic lattice (see [1]).

Here we consider the initial-boundary value problem for (1) with
initial values
( 2 ) y(0, x) f(x), 3y / 3t(O, x) g(x),
and with periodic boundary condition
( 3 ) y(t, x)--y(t, x + 1) or all x and t.
Then we have the ollowing theorem being concerned with the global
solution or the problem"

Theorem. For every O, fl O, and for every real l-periodic
initial functions f e W()(0, 1), g e W(t)(0, 1), there exists the unique

function which satisfies (1), (2) and (3) in the classical sense in the
whole (t, x) plane.

The method of proof is the semi-discrete approximation similar
to that presented by SjSberg [2].

The authors were announced by Nisida [3] that he independently
treated the same problem by means of the theory of semi-groups.

2. Proof of existence of the global solution. In order to prove
the existence of the desired solution we employ the ollowing semi-
discrete approximation"

dy(t, x)/dt=D+[D_y(t, x) + (D_y(t, x))+/2p + 1]

*--D/D_y(t,x), r--l,2, N
( 4 ) y(O, x) =f(x), dye/dr(O, x) g(x), r- 1, 2, ,N,

y(t,x)=y(t,x/), r=1,2,...,N and all t
where the mesh-width h=l/N, N natural number, x=rh and the
difference operators D/ and D_ are defined by

hD+y(xO=y(x+)--y(x), hD_y(x)--y(x)-y(x_).
For every h0 the solution of the problem (4) uniquely exists on

the basis of the theory of ordinary differential equations. The solu-
tion y(t, x), fixed N, is a grid-function defined for x=rh. We may
write y(t, x)=y(t) for the sake of simplicity.
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We denote by (f, g) the scalar product and by Ilfll the norm in
the space L(0, 1), that is

(f g)--:f(x)g(x)dx and

On the other hand, in the space of grid-functions we define

(f, g)-, f(x)g(x)h and Ilfll-(f, f).

Now we are going to write down a discrete analogue of Sobolev’s
theorem.

Lemma 1. Let a and be integers with the property
and agN/2-1. Then to every constant e>O there exists a constant
C() 0, independent of N-periodic grid-functions u and h, such that

v v .2 1 au( 5 ) ID+D_u maxD+D_u eIDD_ + C(e)lu,

where a-a+a, v-v+v, a, vO, i, ],-1, 2.
Here we define

( 7 ) E(t)-(l]dv/dt + fl]DSv]] + ]D_v[)/2,
(.8)
where v- dye(t) / dt, w-dy(t) / dt. Then we obtain the following"

Lemma 2. For an arbitrary finite interval Og tg T, there exist
constants K, i-1, 2, 3, which are independent of h, such that
( 9 ) E(t) K,
(10) E(t)gK,
(11) E(t)gK.

Proof. Differentiating (6) with respect to t, using the periodicity
o the function y, and the system (4), we have

dE(t)/dt--O
which implies E(t) E(O) K.

In virtue of the following inequality

and of (9), we get, or an arbitrary finite interval 0g tg T,

where k is a constant independent of h.
Now the function v.(t)-dy(t)/dt satisfies the equation

(13) dv(t)/dt--D+D_v+a(D+y)D+D_v+aD_vD+(D_y)
flD+D_v

which is obtained by differentiating the equation (4) with respect to t.
Differentiating (7), using the periodicity of the function v(t) and the
equation (13), we have

dE(t)/dt-- a(dv/dt, (D+y)D+D_v +D_vD+(D_y)).
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Since
(dv/dt, (D/y)D+D_v)<_max D/yl(lldv/dtll + liD
(dv/dt, D_vD/(D_y))

<_2p max D_yl- max D_v

<_P max ID_yl-ilID+D_yIl(lldv/dt[ll + IIDv Ill +
we obtain

dE(t) /dt kE(t),
where k is a constant independent of h, which implies

E(t)gE(O) exp kT--K, 0 t< T.
The inequality (11) may be driven in the similar way as (10).

(q.e.d.)
Lemma . There exist constants m, i=1,2 independent of h,

such that for an arbitrary finite interval Og tg T,
D

Proof. In virtue of Lemma 2 and periodicity o y(t), we get
by (4)
(14) fllDSDLyl]n]Idy/dtl+ I]D+D_y]a+ D+(D_y)’+[/2p+ I gk,
where k is a constant independent of h.

Now from the equality
D+D_dy/dt--D+D (D y+a(D y),+/2p+l)--flDDy,

Lemma 2 and (14), we obtain the ollowing estimate

IID+D-YlInm.
From the equation with respect to v(f)-d#(f)/df we get

using Lemma 2.
Now, in this section, it remains to show that from the solution of

semi-discrete approximation (4) we may construct the desired solution
in an arbitrary finite interval 0< t< T. But our method is similar to
the procedure adopted by SjSberg [2]. Then it suffices to show that
we can obtain the solution by the application of Ascoli-Arzela theorem
on the family of functions

5(, x)- Z a(w, f)e, a(, t)-(e, y(t, x))
where N=2n+ 1, n-- 1, 2,

By the same argument as the above one, we can prove the exist-
ence in the lower half plane tg 0.

3. Uniqueness.
Lemma 4. Let y(t,x) be a solution of (1) with (2) and (3).

Then for an arbitrary fixed strip {-- <x<, 0<t< T}, there exist
constants C, i= 1, 2, 3, 4 depending only on T, , , f, g, and their deriv-
atives such that

llyllgC1, ll#y/#tIgC, max l#y/#x]gC,
0KxK1
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Proof. We define the energy

/2. Differentiating E(t) and using periodicity of y(t), we have
dE(t)/dt-O

from which it ollows 3y/3t[] gC, ]3y/3xi] gC. Then taking into
account of the inequality

weobtain ]]y]C. ThenusingSobolev’s theoremwegetmax3y/3x]
C. (q.e.d.)

Now we assume that y(t, x) and (t, x) are two solutions of the
equation (1) satisfying the same initial conditions and (3). Then, the
difference z-- y-- satisfies

z--z+ayz+a(y- +y-y+... +y-+-)Zx--Zzx.
Introducing G(t) defined by

G(t)=(3z/3tl + fl3z/3xl + Dz/3x )/2,
we get, in virtue of Lemma 4,
da(t) / dt- a(zt, yFz) + a(zt, (yF- +yF-+... +yF-+g const. G(t).
From this differential inequality and the initial conditions z(O,x)--O,
zt(O,x)-O, we can immediately conclude z0 in an arbitrary fixed
strip {-- x, OgtgT}.

This completes the proof of the theorem.
Up to now we have not succeeded in proving the global existence

for the ollowing equation"
3y/ 3t ( + a(3y/ 3x),+)3y/ 3x- fl3’y / 3x’,

where a and fl are positive constants and p=0, 1, 2,
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