103. On the Global Solution of a Certain Nonlinear Partial Differential Equation

By Masayoshi Tsutsumi and Riichi Iino
Waseda University

(Comm. by Kinjirô Kunugi, m. J. A., June 10, 1969)

1. Introduction. We consider the following fourth order partial differential equation
(1)

$$
\partial^{2} y / \partial t^{2}=\left(1+\alpha(\partial y / \partial x)^{2 p}\right) \partial^{2} y / \partial x^{2}-\beta \partial^{4} y / \partial x^{4}
$$

where α and β are positive constants and $p=1,2, \cdots$, which is deeply connected with the study of the anharmonic lattice (see [1]).

Here we consider the initial-boundary value problem for (1) with initial values
(2) $\quad y(0, x)=f(x), \quad \partial y / \partial t(0, x)=g(x)$, and with periodic boundary condition
(3) $\quad y(t, x)=y(t, x+1) \quad$ for all x and t.

Then we have the following theorem being concerned with the global solution for the problem:

Theorem. For every $\alpha>0, \beta>0$, and for every real 1-periodic initial functions $f \in W_{2}^{(6)}(0,1), g \in W_{2}^{(4)}(0,1)$, there exists the unique function which satisfies (1), (2) and (3) in the classical sense in the whole (t, x) plane.

The method of proof is the semi-discrete approximation similar to that presented by Sjöberg [2].

The authors were announced by Nisida [3] that he independently treated the same problem by means of the theory of semi-groups.
2. Proof of existence of the global solution. In order to prove the existence of the desired solution we employ the following semidiscrete approximation:

$$
\begin{align*}
& d^{2} y_{N}\left(t, x_{r}\right) / d t^{2}=D_{+}\left[D_{-} y_{N}\left(t, x_{r}\right)+\alpha\left(D_{-} y_{N}\left(t, x_{r}\right)\right)^{2 p+1} / 2 p+1\right] \\
& \quad \beta D_{+}^{2} D_{-}^{2} y_{N}\left(t, x_{r}\right), \quad r=1,2, \cdots, N \\
& y_{N}\left(0, x_{r}\right)=f\left(x_{r}\right), \quad d y_{N} / d t\left(0, x_{r}\right)=g\left(x_{r}\right), \quad r=1,2, \cdots, N, \tag{4}\\
& y_{N}\left(t, x_{r}\right)=y_{N}\left(t, x_{r+N}\right), \quad r=1,2, \cdots, N \quad \text { and all } t
\end{align*}
$$

where the mesh-width $h=1 / N, N$ natural number, $x_{r}=r h$ and the difference operators D_{+}and D_{-}are defined by

$$
h D_{+} y\left(x_{r}\right)=y\left(x_{r+1}\right)-y\left(x_{r}\right), \quad h D_{-} y\left(x_{r}\right)=y\left(x_{r}\right)-y\left(x_{r-1}\right) .
$$

For every $h>0$ the solution of the problem (4) uniquely exists on the basis of the theory of ordinary differential equations. The solution $y_{N}\left(t, x_{r}\right)$, fixed N, is a grid-function defined for $x_{r}=r h$. We may write $y_{N}\left(t, x_{r}\right)=y_{r}(t)$ for the sake of simplicity.

We denote by (f, g) the scalar product and by $\|f\|$ the norm in the space $L_{2}(0,1)$, that is

$$
(f, g)=\int_{0}^{1} \overline{f(x)} g(x) d x \quad \text { and } \quad\|f\|^{2}=(f, f)
$$

On the other hand, in the space of grid-functions we define

$$
(f, \mathrm{~g})_{h}=\sum_{r=1}^{N} \overline{f\left(x_{r}\right)} g\left(x_{r}\right) h \quad \text { and } \quad\|f\|_{h}^{2}=(f, f)_{h}
$$

Now we are going to write down a discrete analogue of Sobolev's theorem.

Lemma 1. Let σ and τ be integers with the property $0 \leq \tau<\sigma$ and $\sigma \leq N / 2-1$. Then to every constant $\varepsilon>0$ there exists a constant $C(\varepsilon)>0$, independent of N-periodic grid-functions u and h, such that

$$
\begin{equation*}
\left\|D_{+}^{\tau_{1}} D_{-}^{\tau_{2}} u\right\|_{n}^{2} \leq \max _{1 \leq r \leq N}\left|D_{+}^{\tau_{1}} D_{-}^{\tau_{2}} u\right|^{2} \leq \varepsilon\left\|D_{+}^{\sigma_{1}} D_{-}^{\sigma_{2}} u\right\|_{h}^{2}+C(\varepsilon)\|u\|_{h}^{2}, \tag{5}
\end{equation*}
$$ where $\sigma=\sigma_{1}+\sigma_{2}, \tau=\tau_{1}+\tau_{2}, \sigma_{i}, \tau_{j} \geq 0, i, j,=1,2$.

Here we define
(6) $\quad E_{1}(t)=\left(\|d y / d t\|_{n}^{2}+\beta\left\|D_{-}^{2} y\right\|_{n}^{2}+\alpha\left\|\left(D_{-} y\right)^{p+1}\right\|_{n}^{2} /(2 p+1)(p+1)\right.$

$$
\left.+\left\|D_{-} y\right\|_{n}^{2}\right) / 2,
$$

(7) $\quad E_{2}(t)=\left(\|d v / d t\|_{n}^{2}+\beta\left\|D_{-}^{2} v\right\|_{h}^{2}+\left\|D_{-} v\right\|_{n}^{2}\right) / 2$,
(8) $\quad E_{3}(t)=\left(\|d w / d t\|_{n}^{2}+\beta\left\|D_{-}^{2} w\right\|_{n}^{2}+\left\|D _w\right\|_{n}^{2}\right) / 2$,
where $v_{r}=d y_{r}(t) / d t, w_{r}=d^{2} y_{r}(t) / d t^{2}$. Then we obtain the following :
Lemma 2. For an arbitrary finite interval $0 \leq t \leq T$, there exist constants $K_{i}, i=1,2,3$, which are independent of h, such that

$$
\begin{align*}
& E_{1}(t) \leq K_{1}, \tag{9}\\
& E_{2}(t) \leq K_{2}, \tag{10}\\
& E_{3}(t) \leq K_{3} . \tag{11}
\end{align*}
$$

Proof. Differentiating (6) with respect to t, using the periodicity of the function y_{r}, and the system (4), we have

$$
d E_{1}(t) / d t=0
$$

which implies $E_{1}(t)=E_{1}(0) \leq K_{1}$.
In virtue of the following inequality

$$
\|y(t)\|_{h}^{2} \leq 2\left(t \int_{0}^{t}\|d y(s) / d t\|_{h}^{2} d s+\|f\|_{n}^{2}\right)
$$

and of (9), we get, for an arbitrary finite interval $0 \leq t \leq T$, (12)

$$
\|y(t)\|_{n}^{2} \leq k_{1}
$$

where k_{1} is a constant independent of h.
Now the function $v_{r}(t)=d y_{r}(t) / d t$ satisfies the equation

$$
\begin{align*}
d^{2} v_{r}(t) / d t^{2}= & D_{+} D_{-} v_{r}+\alpha\left(D_{+} y_{r}\right)^{2 p} D_{+} D_{-} v_{r}+\alpha D_{-} v_{r} D_{+}\left(D_{-} y_{r}\right)^{2 p} \tag{13}\\
& -\beta D_{+}^{2} D_{-}^{2} v_{r}
\end{align*}
$$

which is obtained by differentiating the equation (4) with respect to t. Differentiating (7), using the periodicity of the function $v_{r}(t)$ and the equation (13), we have

$$
d E_{2}(t) / d t=\alpha\left(d v / d t,\left(D_{+} y\right)^{2 p} D_{+} D_{-} v+D_{-} v D_{+}\left(D_{-} y\right)^{2 p}\right)_{h} .
$$

Since

$$
\begin{aligned}
& \left(d v / d t,\left(D_{+} y\right)^{2 p} D_{+} D_{-} v\right)_{h} \leq \max _{r}\left|D_{+} y_{r}\right|^{2 p}\left(\|d v / d t\|_{h}^{2}+\left\|D_{+} D_{-} v\right\|_{h}^{2}\right) / 2 \\
& \left(d v / d t, D_{-} v D_{+}\left(D_{-} y\right)^{2 p}\right)_{h} \\
& \quad \leq 2 p \max _{r}\left|D_{-} y_{r}\right|^{2 p-1} \max _{r}\left|D_{-} v_{r}\right|\|d v / d t\|_{h}\left\|D_{+} D_{-} y\right\|_{h} \\
& \quad \leq p \max _{r}\left|D_{-} y_{r}\right|^{2 p-1}\left\|D_{+} D_{-} y\right\|_{h}\left(\|d v / d t\|_{h}^{2}+\varepsilon\left\|D_{-}^{2} v\right\|_{h}^{2}+C(\varepsilon)\left\|D_{-} v\right\|_{h}^{2}\right)
\end{aligned}
$$

we obtain

$$
d E_{2}(t) / d t \leq k_{2} E_{2}(t)
$$

where k_{2} is a constant independent of h, which implies

$$
E_{2}(t) \leq E_{2}(0) \exp k_{2} T=K_{2}, \quad 0 \leq t \leq T .
$$

The inequality (11) may be driven in the similar way as (10).
(q.e.d.)

Lemma 3. There exist constants $m_{i}, i=1,2$ independent of h, such that for an arbitrary finite interval $0 \leq t \leq T$,

$$
\left\|D_{+}^{3} D_{-}^{3} y\right\|_{h} \leq m_{1}, \quad\left\|D_{+}^{2} D_{-}^{2} d y / d t\right\|_{h} \leq m_{2}
$$

Proof. In virtue of Lemma 2 and periodicity of $y_{r}(t)$, we get by (4)
(14) $\beta\left\|D_{+}^{2} D_{-}^{2} y\right\|_{h} \leq\left\|d^{2} y / d t^{2}\right\|_{h}+\left\|D_{+} D_{-} y\right\|_{h}+\alpha\left\|D_{+}\left(D_{-} y\right)^{2 p+1}\right\|_{h} / 2 p+1 \leq k_{3}$, where k_{3} is a constant independent of h.

Now from the equality

$$
D_{+} D_{-} d^{2} y_{r} / d t^{2}=D_{+}^{2} D_{-}\left(D_{-} y_{r}+\alpha\left(D_{-} y_{r}\right)^{2 p+1} / 2 p+1\right)-\beta D_{+}^{3} D_{-}^{3} y_{r},
$$

Lemma 2 and (14), we obtain the following estimate

$$
\left\|D_{+}^{3} D_{-}^{3} y\right\|_{n} \leq m_{1} .
$$

From the equation with respect to $v_{r}(t)=d y_{r}(t) / d t$ we get

$$
\left\|D_{+}^{2} D_{-}^{2} v\right\|_{h}=\left\|D_{+}^{2} D_{-}^{2} d y / d t\right\|_{h} \leq m_{2} .
$$

using Lemma 2.
Now, in this section, it remains to show that from the solution of semi-discrete approximation (4) we may construct the desired solution in an arbitrary finite interval $0 \leq t \leq T$. But our method is similar to the procedure adopted by Sjöberg [2]. Then it suffices to show that we can obtain the solution by the application of Ascoli-Arzela theorem on the family of functions

$$
\phi_{N}(t, x)=\sum_{\omega=-n}^{n} a_{N}(\omega, t) e^{2 \pi i \omega x}, \quad a_{N}(\omega, t)=\left(e^{2 \pi i \omega x}, y_{N}\left(t, x_{r}\right)\right)_{h}
$$

where $N=2 n+1, n=1,2, \cdots$.
By the same argument as the above one, we can prove the existence in the lower half plane $t \leq 0$.
3. Uniqueness.

Lemma 4. Let $y(t, x)$ be a solution of (1) with (2) and (3). Then for an arbitrary fixed strip $\{-\infty<x<\infty, 0 \leq t \leq T\}$, there exist constants $C_{i}, i=1,2,3,4$ depending only on T, α, β, f, g, and their derivatives such that

$$
\|y\| \leq C_{1}, \quad\|\partial y / \partial t\| \leq C_{2}, \quad \max _{0 \leq x \leq 1}|\partial y / \partial x| \leq C_{3}, \quad\left\|\partial^{2} y / \partial x^{2}\right\| \leq C_{4} .
$$

Proof. We define the energy
$E(t)=\left(\|\partial y / \partial t\|^{2}+\|\partial y / \partial x\|^{2}+\alpha\left\|(\partial y / \partial x)^{p+1}\right\|^{2} /(2 p+1)(p+1)+\beta\left\|\partial^{2} y / \partial x^{2}\right\|^{2}\right)$
/2. Differentiating $E(t)$ and using periodicity of $y(t)$, we have

$$
d E(t) / d t=0
$$

from which it follows $\|\partial y / \partial t\| \leq C_{2},\left\|\partial^{2} y / \partial x^{2}\right\| \leq C_{4}$. Then taking into account of the inequality

$$
\|y\|^{2} \leq 2\left(t \int_{0}^{t}\|\partial y(s) / \partial t\|^{2} d s+\|f\|^{2}\right),
$$

we obtain $\|y\| \leq C_{1}$. Then using Sobolev's theorem we get $\max |\partial y / \partial x|$ $\leq C_{3}$.
(q.e.d.)

Now we assume that $y(t, x)$ and $\hat{y}(t, x)$ are two solutions of the equation (1) satisfying the same initial conditions and (3). Then, the difference $z=y-\hat{y}$ satisfies

$$
z_{t t}=z_{x x}+\alpha y_{x}^{2 p} z_{x x}+\alpha\left(y_{x}^{2 p-1}+y_{x}^{2 p-2} \hat{y}_{x}+\cdots+y_{x} \hat{y}_{x}^{2 p-2}+\hat{y}_{x}^{2 p-1}\right) \hat{y}_{x x} z_{x}-\beta z_{x x x x}
$$

Introducing $G(t)$ defined by

$$
G(t)=\left(\|\partial z / \partial t\|^{2}+\beta\left\|\partial^{2} z / \partial x^{2}\right\|^{2}+\|\partial z / \partial x\|^{2}\right) / 2,
$$

we get, in virtue of Lemma 4,

$$
\begin{aligned}
d G(t) / d t & =\alpha\left(z_{t}, y_{x}^{2 p} z_{x x}\right)+\alpha\left(z_{t},\left(y_{x}^{2 p-1}+y_{x}^{2 p-2} \hat{y}_{x}+\cdots+y_{x} \hat{y}_{x}^{2 p-2}+\hat{y}_{x}^{2 p-1}\right) \hat{y}_{x x} z_{x}\right) \\
& \leq \text { const. } G(t) .
\end{aligned}
$$

From this differential inequality and the initial conditions $z(0, x)=0$, $z_{t}(0, x)=0$, we can immediately conclude $z \equiv 0$ in an arbitrary fixed $\operatorname{strip}\{-\infty<x<\infty, 0 \leq t \leq T\}$.

This completes the proof of the theorem.
Up to now we have not succeeded in proving the global existence for the following equation:

$$
\partial^{2} y / \partial t^{2}=\left(1+\alpha(\partial y / \partial x)^{2 p+1}\right) \partial^{2} y / \partial x^{2}-\beta \partial^{4} y / \partial x^{4}
$$

where α and β are positive constants and $p=0,1,2, \cdots$.

References

[1] Zabusky, N. J.: A synergetic approach to problems of nonlinear dispersive wave propagation and interaction. Nonlinear Partial Differential Equations, W. Ames, ed., Academic Press, New York, pp. 223-258 (1967).
[2] Sjöberg, A.: On the Korteweg-de Vries equation. Uppsala Univ. Dept. of Computer Sci., Report (1967).
[3] Nisida, T.: On some semilinear dispersive equation (to appear).

