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1o Consider a branching model as follows. Let b0 be a trivial
branch or a pole, and let (b0, b0) be as in Fig. 1. T is the set of
all branches which grow downward with binary branching points.

bo (bo, bo) (b, b)

Fig. 1

b--(b, b) is the branch which have b and b on the left and the right
hand of the highest branching point, respectively. Length l(b) and a
number $(b) are defined by

l(bo)--O, l(b)- l + max (l(bl), l(b2)),
(b0)--l, (b)-(bl)+(b2), or b-(bl, b2).

T denotes the set o all branches with length at most n. b(x) is the
trivial branch with variable x e R at the bottom, and b(x) is the branch
b with variable x at the bottom of the left extreme point. The corre-
spondence b__b(x) is clearly one to one. T(x), l(b(x)), (b(x)), Tn(x)
(bl(X), b), or b(x)e T(x) and b e T, are defined similarly. The fol-
lowing is clear by induction"

To-- {bo}, Tn+ l-- {bo} U {(51, b2), 51, b e Tn}
( 1 To(x)--{b0(x)}, Tn+l(x)--{b0(x)} [J {(bl(x), b2), bl(x) e Tn(x), 52 e Tn}

T-- Tn, T(x)-- Tn(x).
=0 =0

bo(x) b x)
Fig. 2

1) Research supported by the NSF at Cornell University.
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Recall the scheme in [3] and assume q(xlt, x)=_q(t, x), to have
(x It, x, E):-z(x It, x, E) or an intuitive explanation. Define

P){s, bo, t, E) f f(dx)e-q(’)

( 2 ) P(f)(s, b, t, E)- dr P(f)(s, b, r dy)P(X)(s, b, dx)q(r, y)
Js

dz)e_f(x Iv, y,
E

P()(s, b(x), E)
Js R

f(x [r, y, dz)e-f q(’),
for b=(b, b) and b(x)=(b(x), b). We have, by induction,

3 P(X)(s, b, , E)=.f(dx)P(X)(s,_ b(x), , E).

Then, (1), (2), (3) and the definition of S)(s, x, t, E) in [3] easily imply
Theorem 1. For each substochastic f,

S)(s, x, t, E)= P()(s, b(x), t, E),

SV)(s, t, E)- P()(s, b, t, E).
b T

P()(s, x, t, E)= P()(s, b(x), t, E),
(x) T (x)5 )

Pill(E)- P()(s, b, t, E).
bT

2. Intuitive meanings of the quantities are as follows.
P()(s, bo(x), t, E) is the probability that the particle at point x stands
still in the set E rom time s to t. P(f)(s, b(x), t, E) is the probability
that the particle under observation, started at point x at time s, is in
the set E at time t after the interactions with oher (b(x))-1 similar
particles, which started at time s with the initial distribution f inde-
pendently. Here, the branch b(x) determines the order of interac-
tions, and q(t, x) and (x[ t, x, E) determine the waiting times until
interactions and the hitting measures, respectively. P()(s, b, t,E) is
the probability o the same event except that the particle under ob-
servation also starts with initial distribution f. Thus, SV)(s, x, t, E)
is the probability that the particle, Starting at x at time s, is found in
E at time t ater the interactions determined by the branches with
length at most n. The minimal solution P()(s, x, t,E) is the sum of
all these possibilities.

In case q(x] t, x)q(t, x), or when there is no function like q(t, x),
the situation is not so simple. Even the probability that one particle
stands still at point x rom time s to t reflects the infinitely many jumps
of other particles. In act, when the equation (3) of [3] has a stochas-
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tic solution, this probability is determined by | P, (dxl)q(xl t, x),
JR

where the effect of all jumps is implicitly included in P()(, .). The in-
dependence assumption on q(xlt, x) from x cancel the effect of inter-
actions on the probability of standing still.

The modification (29 of [3], in case q(x It, x) q(t, x), is technical-
ly based on the fact that (xlt, x, {x})--0 is not necessary for our
method. Intuitively, this amounts to let the particles jump at the
time determined by q(t, x), earlier than the proper time governed by
q(xlt, x), while the particle jumps back instantly to the starting point
x with probability 1-q(t, x)-lq(x It, x) and jumps into R-{x} with re-
duced hitting measure q(t, x)-lq(x It, x)u(x It, x, E).

A characteristic of our model is that the interactions take place
always between new particles.) This can be explained in terms of the
original gas model of Boltzmann, where the gas is so dilute that the
second or later interactions between the same particles can be ig-
nored.)

:. A version of the Kolmogorov backward equation holds.
Theorem 2. For a fixed time So and a substochastic measure f,

(6) cl ps)(s, x, t E)---q(s, x) ( Po),(dxl)Tr(x. s, x, dy)
ds R R

--x(dy))P()(s, y, t, E), ’)

where fs(.)- p(x) (.) f f(dx)P(f)(So, x s, .) and So< s< t
R

Outline of the proof. Replace f by f, in (7) o [3] and write

(8, , ) P,..(d)’(118 , f()( 18, , )
and P(, z, t,N)=PZ,(, x, t,N). Then, (7) of [] implies that
P(, x, t, ) is a solution of

(7) P(s, x, t,E)--x(E)-- dr f P(s, x, r, dy)q(r, y)(r(r,y,E)--(E)),
Js J

for bounded E. Moreover, P(s, x, t, E) is the minimal solution. In
fact, the minimal solution P(s, x, t, E) of (7) is approximated from

below by Sn(S, x, t, E) So(s, x, t, E)-e-f q(,x) (E),

Sn+1(8, X, t,E)=e-]tq(’)(E)+[dr[- Sn(8 x,r, dy)q(r, y)
Js JR

(r, y, dz)e-f

But, since we have or all n,

2) Compare with the definitio.n of D or etD in [2], where new variables are
induced by each application of D or etD. This reflects the situation here.

3) This explanation owes to McKean.
4) The differentiation in s with fixed f is clearly meaningless, intuitively.
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(r, x, E)-| fr(dxl)7(xl It, x, E)
J

Sn+(s, x, t, E)_/,.(-o x, t, E) by induction, in view of (5) in [3]. This
implies P(s, x, t, E) >_P()(s, x, t, E)=_P(s, x, t, E), and hence the
equality by the minimal property of P(s, x, t, E). Then, take for
granted that the Feller’s results in [1] hold true for a model with sub-
stochastic hitting measure 7(r, x, E).) Then, the minimal solution of
(17) automatically satisfies the backward equation

d P(s, x, t, E)----q(s, x) (7(s, x, dy)-x(dy))P(s, x, t, E),
ds

which is exactly (6) by changing the notation.
4. The results through 1-3 hold true for the general model in 4

of [3] with clear modifications. Moreover, the contents of this paper
and [3] can be extended to a model determined by

P(f)(s, x, t, E)=Po(s, x, t, E)

(8) + dr Pf(s, x, r, dy)P((dXl)q(r, y)
J

[ 7(xl It, y, dz)Po(r, z, t, E),

where Po(s, x, t, E) is the transition probability induced by the killing
by q(t, x) from a transition probability P(s, x, t, E) of a Markov pro-
cess moving on R. Here, we restricted the model to the binary inter-
acting case for simplicity. The backward equation for this model is
based on an extension of Feller [1].

These results will be discussed later.
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