93. A Remark on a Conjecture of Paley

By Masanobu Tsuzuki and Takehiro Misu
Department of Mathematics, Tokyo Metropolitan University, Tokyo
(Comm. by Zyoiti Suetuna, m. J. A., June 10, 1969)

The standard symbols of the Nevanlinna theory

$$
\log ^{+}, M(r, f), m(r, a), N(r, a), T(r, f), \delta(a, f)
$$

are used throughout this note. We define
and

$$
\begin{aligned}
& N(r)=N(r, 0)+N(r, \infty) \\
& K(f)=\lim _{r \rightarrow \infty} \frac{N(r)}{T(r)}
\end{aligned}
$$

Paley [3] conjectured that an integral function of finite order $\rho>\frac{1}{2}$ satisfies

$$
\limsup _{r \rightarrow \infty} \frac{m(r, f)}{\log M(r, f)} \geqq \frac{1}{\pi \rho} .
$$

The object of the present note is to show that as an immediate consequence of Edrei-Fuchs's results [1,2] we obtain

Theorem. If an integral function of finite order $\rho>\frac{1}{2}$ satisfies

$$
\begin{equation*}
\sum_{a \neq \infty} \delta(a, f)=1 \tag{1}
\end{equation*}
$$

then we have

$$
\frac{1}{2} \geqq \limsup _{r \rightarrow \infty} \frac{m(r, f)}{\log M(r, f)} \geqq \liminf _{r \rightarrow \infty} \frac{m(r, f)}{\log M(r, f)} \geqq \frac{1}{\pi}
$$

In particular if there exists a finite a with $\delta(a, f)=1$, then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{m(r, f)}{\log M(r, f)}=\frac{1}{\pi} \tag{2}
\end{equation*}
$$

Edrei and Fuchs proved the following theorem and lemmas.
Theorem A [1]. If the integral function $f(z)$ in question satisfies (1), then

$$
\lim _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)}=1, K\left(f^{\prime}\right)=0
$$

and $f(z)$ is necessarily of positive integral order and of regular growth.
Lemmas [2]. Let $f(z)$ be a meromorphic function of finite lower order μ and p be the non-negative integer defined by the inequalities

$$
p-\frac{1}{2} \leqq \mu<p+\frac{1}{2} .
$$

Let $E(u, p)$ be the primary factor of genus p. Now suppose that the function $f(z)$ satisfies

$$
K(f)<\frac{\varepsilon}{B_{0}(p+1) \log (p+1)+B_{1}(p+1) \log (1 / \delta)},
$$

where $0<\varepsilon \leqq 1,0<\delta<e^{-1}, B_{1} \leqq B_{0}$ and B_{1} is a sufficiently large number. Then we obtain the following I, II and III:

Lemma I. $\quad p \geqq 1$ and $f(z)$ has the representation

$$
f(z)=z^{k} e^{\alpha_{0} z p+\alpha_{1} z p-1+\cdots+\alpha_{p}} \frac{E\left(\frac{z}{a_{\nu}}, p\right)}{E\left(\frac{z}{b_{\nu}}, p\right)}(k \text { integer }) .
$$

Lemma II. We set $\alpha=e^{1 /(p+1)}$ and

$$
c_{j}=\alpha_{0}+\frac{1}{p}\left\{\sum_{\left|a_{\nu}\right| \leqslant \alpha^{j}} a_{\nu}^{-p}-\sum_{\left|\nu_{\nu}\right| \leqq \alpha^{j}} b_{\nu}^{-p}\right\} .
$$

Consider the annulus Γ_{j} defined by

$$
\alpha^{j} \leqq r<\alpha^{j+\frac{3}{2}} \quad\left(j=1,2, \cdots ; z=r e^{i \theta}\right)
$$

Then we have

$$
T(r)<\frac{4}{\pi}\left|c_{j}\right| r^{p}, \quad \alpha^{j} \leqq r<\alpha^{j+\frac{3}{2}}, \quad j \geqq j_{0} .
$$

Lemma III. For all sufficiently large integer j we may find an exceptional set E_{j}, such that

$$
z \in\left\{\Gamma_{j}-E_{j}\right\}
$$

implies

$$
|\log | f(z)\left|-R c_{j} z^{p}\right|<4 \varepsilon\left|c_{j}\right| r^{p},
$$

and E_{j} is covered by circles subtending angles at the origin whose sum S_{j} does not exceed $8 \pi e^{3} \delta$. In particular if $f(z)$ is an entire function, we have

$$
\log |f(z)|<R c_{j} z^{p}+4 \varepsilon\left|c_{j}\right| r^{p}
$$

for $z \in \Gamma_{j}\left(j>j_{0}\right)$.
Proof of Theorem. By Theorem A we have $K\left(f^{\prime}\right)=0$, and thus we apply lemmas to $f^{\prime}(z)$. Let $\eta>0$ be a sufficiently small number and set

$$
\begin{equation*}
\delta=\frac{\eta}{4 \pi e^{3} p} \tag{3}
\end{equation*}
$$

then by Lemma III we obtain

$$
\log M\left(r, f^{\prime}\right)>\left|c_{j}\right| r^{p} \cos \frac{\eta}{p}-4 \varepsilon c_{j} r^{p}
$$

for $\alpha^{j} \leqq|z|=r<\alpha^{j+\frac{3}{2}}\left(j \geqq j_{0}\right)$, and

$$
\begin{aligned}
m\left(r, f^{\prime}\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta \\
& \leqq \frac{1}{2 \pi} \cdot p \cdot \int_{-\frac{\pi}{2 p}}^{\frac{\pi}{2 p}}\left|c_{j}\right| r^{p} \cos p \theta d \theta+4 \varepsilon\left|c_{j}\right| r^{p} \\
& =\frac{1}{\pi}\left|c_{j}\right| r^{p}+4 \varepsilon\left|c_{j}\right| r^{p}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\frac{m\left(r, f^{\prime}\right)}{\log M\left(r, f^{\prime}\right)} \leqq \frac{\frac{1}{\pi}(1+4 \varepsilon \pi)}{\cos \frac{\eta}{p}-4 \varepsilon} \tag{4}
\end{equation*}
$$

Moreover the condition (3) implies that S_{j} equals at most $2 \eta / p$. This gives

$$
\begin{align*}
m\left(r, f^{\prime}\right) & \geqq \frac{1}{2 \pi} \cdot p \cdot \int_{-\frac{\pi}{2 p}}^{-\frac{\eta}{p}}\left|c_{j}\right| r^{p} \cos p \theta d \theta+\frac{1}{2 \pi} \int_{\frac{\pi}{p}}^{\frac{\eta}{2 p}}\left|c_{j}\right| r^{p} \cos p \theta d \theta-4 \varepsilon\left|c_{j}\right| r^{p} \\
& =\frac{1}{\pi}\left|c_{j}\right| r^{p}(1-\sin \eta-4 \varepsilon \pi) \quad\left(j \geqq j_{0}\right) \tag{5}
\end{align*}
$$

Therefore we have

$$
\frac{m\left(r, f^{\prime}\right)}{\log M\left(r, f^{\prime}\right)} \geqq \frac{\frac{1}{\pi}(1-\sin \eta-4 \varepsilon \pi)}{1+4 \varepsilon} \quad\left(r \geqq r_{0}\right)
$$

Since $\varepsilon>0$ and $\eta>0$ may be chosen as small as possible, from (4) and (5) we deduce

$$
\begin{equation*}
\frac{1}{\pi}(1+0(1)) \geqq \frac{m\left(r, f^{\prime}\right)}{\log M\left(r, f^{\prime}\right)} \geqq \frac{1}{\pi}(1-0(1)) \quad(r \rightarrow \infty) . \tag{6}
\end{equation*}
$$

This and Theorem A give

$$
\liminf _{r \rightarrow \infty} \frac{m(r, f)}{\log M(r, f)} \geqq \frac{1}{\pi}
$$

with the aid of the well known inequality

$$
\log M(r, f) \leqq \log M\left(r, f^{\prime}\right)+0(\log r)
$$

Next we shall prove

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{m(r, f)}{\log M(r, f)} \leqq \frac{1}{2} \tag{7}
\end{equation*}
$$

Let $\arg c_{j}=\omega_{j}$. We denote by A_{j} and B_{j} the sets of points $z=r e^{i \theta}$, which belong to Γ_{j}, defined by $\cos \left(p \theta+\omega_{j}\right) \geqq-5 \varepsilon$ and $\cos \left(p \theta+\omega_{j}\right)$ $<-5 \varepsilon$ respectively. B_{j} consists of p circular rectangles which we denote by $B_{j}^{(1)}, B_{j}^{(2)}, \cdots, B_{j}^{(p)}$. Edrei-Fuchs proved that every $B_{j}^{(i)}(i=1,2, \cdots, p)$ meets necessarily one (which we denote by $\mathcal{L}^{(i)}$) of the asymptotic paths $\mathcal{L}^{(1)}, \mathcal{L}^{(3)}, \cdots$ possessing finite asymptotic values [2]. By Lemmas II and III for all sufficiently large r we deduce

$$
\left|f^{\prime}(z)\right|<e^{-\frac{\pi \varepsilon}{4} T\left(r, f^{\prime}\right)}, z \in B_{j}
$$

Now for arbitrary z belonging to $B_{j}^{(i)}$ and $z_{i j}$ on $\mathcal{L}^{(i)} \cap B_{j}^{(i)}$ we have

$$
\left|f(z)-f\left(z_{i j}\right)\right|=\left|\int_{z_{i j}}^{z} f^{\prime}(z) d z\right| \leqq K \cdot r e^{-\frac{\pi \varepsilon}{4} \pi\left(r, f^{\prime}\right)},\left(j \geqq j_{0}\right)
$$

where $K>0$ is an absolute constant. Since the right-hand side converges to zero as $r \rightarrow \infty$ and $\lim f\left(z_{i j}\right)=\beta_{i}$ is finite, $f(z)$ converges to β_{i} uniformly in $B_{j}^{(i)}$ as $j \rightarrow \infty$. Therefore for all sufficiently large r

$$
\begin{aligned}
m(r, f) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta \\
& \leqq \frac{1}{2 \pi} \log M(r, f) \cdot \frac{2 \operatorname{Arccos}(-5 \varepsilon)}{p} \cdot p+0(1)
\end{aligned}
$$

and thus

$$
\frac{m(r, f)}{\log M(r, f)} \leqq \frac{1}{\pi} \operatorname{Arccos}(-5 \varepsilon)+0(1) \quad(r \rightarrow \infty)
$$

As $\varepsilon>0$ may be chosen as small as we please, this gives (7). We shall prove the latter of theorem. If we set $F(z)=f(z)-a$, then $\delta(0, F)$ $=\delta(a, f)=1$, and $K(F)=0$. Therefore we have (6) with $F(z)$ instead of $f^{\prime}(z)$, and (2).

References

[1] A. Edrei and W. H. J. Fuchs: On the growth of meromorphic functions with several deficient values. Trans. Amer. Math. Soc., 93, 292-328 (1959).
[2] -: Valeurs déficientes et valeurs asymptotiques fonctions méromorphes. Comment. Math. Helv., 33, 258-295 (1959).
[3] R. E. A. C. Paley: A note on integral functions. Proc. Cambridge Philos. Soc., 28, 262-265 (1932).

