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In this paper, we shall show some theorems on the stability prob-
lems o difference and unctional-differential equations by means
o two methods, one o which is directly dependent on the orms of
equations and the other is to make use o Lyapunov unctionals.

1. Definition of stability. Before stating the definitions o
stability, it is convenient to introduce two norms and a family of
unctions. Let f(t) be a unction with ith component f(t) (i--1, ..., n)
defined for an interval I. Then we define two norms such that
[f(t)[--max_s[f(t)] for any t e I and If I[--sup [f(t). Let q be a
family of functions which have the following properties"
(i) every function in q is defined for s e [--1, 0);
(ii) every function in q has a limit as s--O.

Now we shall consider a difference equation"
( 1 ) x(t) f(t, x(t-- 1)),
where f(t, x) is defined or to+ k<=tto+ k+ 1 (k-0, 1, ...) and [x[H,
for any fixed x the limit as t-to+ k--O (k--l, 2,...) exists, and
f(t, 0)--0 for any fixed t. Then we suppose that the difference equa-
tion (1) has a solution x(t) for t>=to such that x(t)]<H under the
initial condition
2 ) x(t) 9(t), t0-- 1 _<_ t< to.

Here the initial function 9(t) is a given function defined for
t e [to--1, to), has a limit as t-.to--O, and satisfies llg(t0 + s)l < H, where
the norm is defined as before, if we consider the function 9(t0+s) to
be in q as s varies over the interval [--1, 0). If we denote by x(t, to, )
the solution of (1) with the initial condition (2), the stability of the
trivial solution of (1) will be defined following those of functional-
differential equations.

Definition 1. The trivial solution of (1) is said to be stable if for
any given e 0 there exists a (, to) such that 9(to+ s)ll (, to)
implies Ix(t, to, )[ e for any t> to.

1) In this paper, every equation will be treated in the. n-dimensional vector
space,.
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Definition 2. The trivial solution o (1)is said to be uniformly
stable i or any given e)0 there exists a ((e) such that
implies Ix(t, to, )le or any t__> to.

Definition :. The trivial solution of (1) is said to be asymptotically
stable i it is stable and there exists a 0(t0) such that (t0+ s) 0(t0)
implies lim] x(t, to, ) --0.

t

Definition 4. The trivial solution o (1)is said to be uniformly
asymptotically stable i it is uniformly stable and there exist a con-
stant 0 and T(e) or any given 0 such that ]](to+S)]]o implies
x(, t0, )e for any t t0+ T(e).

2. Uniformly asymptotic stability of perturbed difference
systems. Let f(t, x) have the same properties as before and A(t) be
an n n matrix having the same properties as f(t, x) with respect to t
and det A(t)O for any t t0. Then it is supposed that the perturbed
difference system
( 3 ) x(t)-A(t)x(t--1)+ f(t, x(t-- 1))
has a solution x(t, to, ) for tto such that Ix(t, to, )i<H under the
initial condition (2). Before stating the theorems, we have to prepare
two lemmas.

Lemma 1.) If the inequality
--1

ug+ Ku (m-O, 1, ...)

is satisfied, where KO (m-O, 1, ...), we obtain an estimation for
u such that

ug+ Kg (I+K) (m-1,2, ...).)
k=0 =k+l

If gO (m--O, 1, ...), we obtain

=0 =+
I eO (m-1, 2, ...) i eotat ad KO, we obtai

Ne (l+K)Neexp K (m-l, 2,...).
=0 =0

Lemma Z2 Let X(t, to) be dameta matriz o the homoee-
o gtem (t)--A(t)(t--1) eh that X(to, to)--N (the it mtriz).

I the tfiia oltio o it i iom mptotieall tbe, thee
ezit oitive eott B d eh that IIX(t, to)llB ex(--(t--t,))
Io tto. Here IlXll ereet the om o X hieh i eoigeed

to be iea oeto.
2) This result corresponds to Gronwall’s inequality in the theory of differ-

ential equations.
r-1

3) As usual, it is supposed that F, bk=0 and V[ c--1 for any b, c and
k=r

integer r.
4) This lemma is proved as in the theory of functional-differential equations.
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By means of two lemmas above, we can establish the following
results.

Theorem 1. In the equation (3), suppose that for sufficiently small
constant c the function f(t, x) satisfies an inequality If(t, x)l<=clxl for
t>=to and Ix]h(<-H). Then, if the trivial solution of the homogene-
ous system x(t)=A(t)x(t-1) is uniformly asymptotically stable, the
trivial solution of (3) is also uniformly asymptotically stable.

Theorem 2. In the equation (3), suppose that the function f(t, x)
satisfies an inequality If(t, x)l<__fl(t)lxl for t>= to and [xl h(<=H), where

fl(t) is defined for to+ k<=tto+ k+ 1 (k-O, 1, ...) and the infinite
series , sup fl(to+k+s)

k=l s[-1,0)

is convergent. Then, if the trivial solution of the homogeneous system
x(t)=A(t)x(t--1) is uniformly asymptotically stable, the trivial solu-
tion of (3) is also uniformly asymptotically stable.

3. Applications of Lyapunov unctionals to difference systems.

It is well known that Lyapunov’s V-functions play an important role
in the stability theory of differential equations. In the following,

four theorems using V-functionals will be stated or difference systems.
Three unctions a(r), b(r), and c(r) will always be defined or
continuous, strictly monotone increasing, and a(0) b(0) c(0) -0.

Theorem 3. Suppose that for any t>= to and 4z e there exists a

functional V[t, ] which has the following properties"
( ) for any given 0 there exists a (, to) such that
(e, to) implies V[to, (to+ s)] s;

(ii) for any t> to and e 3 the inequality a(ll II)<= V[t, ,] is satisfied;
(iii) for any solution x(t, to, q) of (1) the inequality AV[to+ m, X(to+ m
+s, to, q)]_<_0 is satisfied for m-O, 1,

Then the trivial solution of (1) is stable.
Theorem 4. Suppose that for any t>=to and e there exists a

functional V[t, 4x] which has the following properties"
( ) for any t >_ to and e the inequality a(ll II) <-_ V[t, ] <= b(ll II) is

satisfied;
(ii) for any solution x(t, to, ) of (1) the inequality AV[to + m, X(to +m
+s, to, q)]0 is satisfied for m-O, 1, ....

Then the trivial solution of (1) is uniformly stable.
Theorem 5. Suppose that for any t>=to and e there exists a

functional V[t, 4x] which has the following properties"
( i ) for any given 0 there exists a (e, to) such that
(e, to) implies V[to, (to+ s)]

(ii) for any t >- to and e the inequality a(ll ll) <_ V[t, ] is satisfied;
(iii) for any solution x(t, to, ) of (1) the inequality AV[to + m, X(to +m
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+ s, to, (f)] <- c(V[to + m + s, x(to + m + s, to, q)] is satisfied for any
m-O, 1,. ..

Then the trivial solution of (1) is asymptotically stable.
Theorem 6. Suppose that for any t>=to and e there exists a

functional V[t, ] which has the following properties"
( i ) for any t to and e the inequality a(l ) Vii, ] b( 1) is
satisfied;
(ii) for any solution x(t, to, ) of (1) the inequality V[to+ m, X(to +m
+ s, t0, )]--c(x(to+m+ s, to, )[]] is satisfied for m-O, 1, ....

Then the trivial solution of (1) is uniformly asymptotically stable.
Remarks 1. In case where t varies over a set of discrete points,

{t0 + k}=0, the corresponding results to our theorems just stated above
will be established by means o the same methods with the following
replacements such that
( ) the norm ... is replaced by the norm ]... ];
(ii) initial unction is replaced by initial value;
(iii) a unctional V[t, ] is replaced by a function of t and x, V(t, x);
(iv) in the hypothesis (i) of Theorems 3 and 5, the unction V(t, x) is
continuous for tto and x<H, and V(t, 0)--0 uniformly in t.

2. If we are concerned with the unctional-differential equation
( 4 ) 2(t) f(t, x(t+ s))
under the initial condition

t It0- , t0),
O[x t to,

where f(t, x(t+ s)) is a functional of x(t+ s) as s varies over an inter-
val [--1, 0), and if we define a function *(t) such that

t e It0- , t0),
*(t)= x t to,

the definitions of stability for the system (4) will be defined as before
only except with the replacement of (t) by *(t). Then we obtain
the same Theorems 3-6 with the same replacement as above.


