
700 Proc. Japan Acad., 45 (1969) [Vol. 45,

156. Some Remarks on Radiation Conditions

By Kiyoshi MOCHIZUKI
Faculty of Liberal Arts, Kyoto University

(Comm. by Kinjir6 KI.INUGI, M. J. A., Oct. 13, 1969)

Introduction. In linear wave propagation problems which are
time-independent and which take place in unbounded domain, it is in
general not possible to characterize the solutions having the desired
physical characteristics by imposing only boundedness conditions at
infinity. To do so it is necessary to impose sharper conditions at
infinity called the radiation conditions.

The radiation conditions have been discovered by Sommerfeld [5]
for the reduced acoustic equation (Helmholtz equation) and by Silver
[4] and, independently, by Mtiller [3] for the reduced Maxwell equations
(vector tIelmholtz equation). On the other hand, in the previous paper
[2] the author gave a new formulation of the radiation condition
applicable to general hyperbolic systems of Maxwell type, and used it
to develop the spectral and scattering theory for the systems in an
exterior domain. The acoustic and Maxwell’s equations are typical
examples of systems of Maxwell type, which suggests that the radiation
condition defined in [2] implies both the Sommerfeld and the Silver-
Miiller radiation conditions. The subject of this note is to verify this
by proving that our definition limited to the acoustic (resp. Maxwell’s)
equation is equivarent to Sommerfeld’s (Silver-Mtiller’s) one.

1. A radiation condition for reduced systems of Maxwell type.
Let us consider symmetric systems of the form

3u -2u(1) Au--A
j--.1 Xj

in an exterior domain G of Rn(n>__2). Here 2 is an arbitrary non-zero
complex number, u--u(x) is a C-valued function of x--(x, x2, ..., x)
e G, and A are m m Hermitian symmetric matrices with the property

The matrix A($)- A$j($ e Rn--{0}) is isotropic, that is,

( 2 det [A($) 2I] ]-[ (vl 1 --2), , my=m,
v=l

where I is the identity in C, v and m (v-1, 2, ..., k) are constants,
and I1=(++"’+)1/. We say that the operator A is of
Maxwell type if the matrix A() is isotropic (cf., Wilcox [6]).

We lavel (v} in decreasing order:
(3) r>r>...
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Then it follows easily that
(4) r=-r_/ and m=m_+.
Thus v=/:0 for each u if k is even, and v(/2-0 if k is odd. We denote
by P()(-1, 2,..., k) the projection in C onto the eigenspace of
A() corresponding to the eigenvalue r]. P() is an mm
Hermitian symmetric matrix obtained by

--1 [A()-I]-ldP()-- 2ui r
where F is a small circle about the point v[$[ containing no other
point of {r{]}. P() is a homogeneous unction o e Rn--{0} O
degree zero and
( 5 ) P(--) P-+(),
We define the projections P+($) and P_($) in C as follows"

( 6 P($)= E P().

Then it ollows that

Here P(+)/($) is the projection onto the null space o A(), and we
have put P(+)n($)O i k is even.

Now the radiation condition defined in [2] or the operator A can
be stated in the 2ollowing orm"

Definition. A solution u=u(x, ) of equation (1) in an exterior
domain G is said to satisfy the radiation condition if i$ behaves for
x large,like

[R.C.1] {u(x,{ ( X u(x,

The subscripts "+" and "-" denote the "incoming" and "outgozng""
radiation conditions, respectively.

[R.C.1] is satisfactory rom the viewpoint in that it leads to
boundary value problems associated with the operator A having unique
solutions (see [2]; Theorem 3.1, Lemma 4.1 and Theorem 4.2). In the
simplest case, i.e., when G-R=, the uniqueness property can be stated
as follows ([2]; Corollary 3.1):

Proposition 1. Let f() be a C-valued square integrable function
having a bounded support in gn, and a be any non-zero real number.
Then the solution u=u of the equation
( 8 ) Au--iau=f(x) in Rn

which satisfies [R.C.1] is unique, and is given by
( 9 ) u(x) lira u(x, ai),

+0

where u(x, ai) is the square integrable solution of (8) with a replaced
by aie (e >0).
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2. The case of the reduced acoustic equation.
Let p-p(x) satisfy the reduced acoustic equation

(10) Vp + tp 0
in an exterior domain G of R, where f" is an arbitrary non-zero complex
number and f is the square root oJ / which satisfies Im p_ 0. The
SommerJeld radiation condition Jor p is given as follows"

p(xl=O(Ixl

[R.C.2]+/- p(x) +ifp(x)=o(ixl_)
(as

 ixl
On the other hand, (10) can be rewritten as a 4x 4 matrix system for

Op 3p 3p ip (p, i[p)*

where i-/--1, and if M is a matrix, M* denotes he transpose of M.
Then the equation has the canonical form

Au--2u-O(11)
with --iv and

(12) A , AD
J=l

0 0 0
o o o o..
0 0 0 D
D D D 0

Lemma 1. A C4-valued function u=u(x) satisfies (11) with =it
in G if and only if u has the form u=(gp, igp)* with p satisfying (10)
in G.

Proof. It is sufficient to prove the "only if" part. Suppose that
u=(u, u, u, u)*=(, u)* satisfies (11) in G. Then it follows that

(13) gu4=i and ’.=ifu4.
Substituting the first equation =--1Vu into the second equation, we

i/

get V"u+ gu=0 in G. Thus, if we put p =---1u,. then=IVp and

hence u (Vp, izp)*.
We put

(la) A() 0 $2

Then, since

(15) det [A()-2L]=2(2-I$1)- l-[ (r,IMI-2)’,

where rl=l, r2=0, r------1 and m=l, m=2, m-l, the operator A
defined by (12) is of Maxwell type.
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Lemma 2.
follows:

[R.C.!] for A defined by (12) can be represented as

[R.C.1], (as
{A (xl) +--It}u(x)=(’x’

Proof. Since the inverse of the matrix A()-2It is obtained as

we have easily

P’($)--P(--$)=
2151 -I1" I1
--1 I[$X (X)]* 0 1P2()--i$,1 o o

Note that P,(_+)P($)=0. Then the second condition of [R.C.1]+/- is
equivalent to

Here __
X$

2P, +P2 -!-I,

Ixl
since X ($ X f) + ($. f)$ {$12f for every f in C3.

Now our problem is to prove the following
Theorem 1. [R.C.2]+/- and [R.C.1]., are equivalent.
Proof. By Lemma 1 we can put u=(Vp, iffp)* in [R.C.1],,

hus, in order to show the theorem, we have only to verify that
Xvp-O(Ixl-9 and iffp-+Vp--o(Ixl-’)

if p=p(x) is assumed to satisfy (10) in G and [R.C.2],, which are
evident since p(x) can be represented for }x} >p + 1 (large) as

[ga(y)]p(y) + ga(y) gp(y)}dyp(x)--
4 <<+ x--y

by use o the Green ormula (c., e.g., Mizohata [1], Chapter VIII),
where a(x) is a C function which is identically one or xi>p+l and
vanishes inside the ball {]x]<p}. q.e.d.
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3. The case of the reduced Maxwell equations.
Let u-(e, m) satisfy the reduced Maxwell equations

(16) { gm--ile--O
--V e--ilm=O

in an exterior domain G of R, where / is an arbitrary non-zero
complex number which satisfies Im/ >_0. The Silver-Miiller radiation
conditions for u-(e, m) can be written as ollows"

(e(x)=O(Ixl-9 m(x)=O(Ixl-)

[R.C.3] lx(Ve)ile=(’x’-l);

[xl (V m)-T-izm=o(]x]-*), as ]x.-.oo.

to the Maxwell operatorThe matrix A($) corresponding

[ 0 V]aretheollowing.-g 0

(17)

[ :__ B() where B()-- 0 =()*.A($)-
B ) 0 J’ _$.

Since

(18) det [A()-2I]-2(2-151)- V[ (r151-2),
where vl--1, v.--O, %----1, the Maxwell operator is also of Maxwell
type.

Lemma 3.
as follows"

[R.C.1]+/- for the Maxwell operator can be represented

[R.C.1],
"u(x)=O(Ixl-)

A ]-. _+I u(x)= o( xl-) (as

where u-(e, m)* with e and m being C3-valued functions.
Proof. The inverse of the matrix A($)--2I is obtained as

1 JR(S, ) S(, )[A()--2I]---
2(2--[$[) LS(--, 2) R($, 2)

where

R(, )-R(-, )-/ -rom his it is o diult to see hat

P(e)
211 -11 ()* [
1 ..[(;)$*

S($, 2)-B(-2).
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Thus, by the same reasoning as in the proof of Lemma 2, we can
conclude the assertion of the lemma, q.e.d.

For u=(e, m), [R.C.1], can be rewritten as
e(x)-O(Ixl-1) m(x)-O(Ixl-)

[R.C.3]’ x x- e-m=o(Ixl-)

This is equivalent to [R.C.3] if u=(e, m) satisfies (16) for xl large.
Thus we have the ollowing

Theorem 2. [R.C.3]+/- and [R.C.1]n, are equivalent.
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