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1. We consider an elliptic partial differential equation

(,) u-pu
on a Riemann surface R, where A-3/x+/y and p is a non-
negative and continuously differentiable function o local parameters
z such that the expression p(z) ldz is invariant under the change of
local parameters z. We call such a unction p a density on R.

The investigation of the global theory of (,) was begun by M.
Ozawa [8] and continued by many others (for example, L. Myrberg
[4], H. L. Royden [9], M. Nakai [5] [6] and F. Maeda [3]).

Associated with the equation (,), Wiener unctions and the Wiener
compactification R$ o R are discussed; more generally the Wiener
compactification of harmonic spaces is studied by C. Constantinescu
and A. Cornea [2]. In this note we shall examine how the Wiener
compactification depends on a density p, and we shall give the follow-
ing result (Theorem 4); If p and q are two densities on R satisfying

(I) a-q_p_aq
on R for some constant a>_ 1, or

(II) ff p(z)-- q(z) dxdy c
JJR

then there exists a homeomorphism * of R$ onto R*q such that
*(F)=Fq, where F, (or Fq) is a harmonic boundary of R*q
(or R*).

2. Let/2 be an open subset of a Riemann surface R. A unc-
tion u on 9 is called p-harmonic on tO if.u is twice continuously differ-
entiable and satisfies (.). A p-superharmonic unction is defined as
usual (see [3]). We know that a twice continuously differentiable
unction s on/2 is p-superharmonic on tO if and only if As--ps <_ 0 on/2.

Let a be an arbitrary point on R. L. Myrberg [4] proved that if
p0, there exists always the Green unction of R with pole at a for
the equation (.). We denote it by gf,’.

3. A real-valued unction f on R is called a p-Wiener unction
when f is quasicontinuous and has a p-superharmonic majorant and
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for any subdomain 9, f is p-harmonizable on 9" the totality of p-
Wiener functions on R is denoted by W,(R). A p-Weiner function f
with h’,-0 is called a p-Wiener potential on R" the totality of p-
Wiener potentials on R is denoted by Wo(R). We have the following
facts similarly to [1].

(a) The class W(R) (or Wo(R)) is a vector lattice with respect to
maximum and minimum.

(b) A non-negative p-superharmonic function is a p-Wiener
function.

(c) A bounded p-Wiener function f has a unique decomposition

f--h’’ +f0, where f0 is a bounded p-Wiener potential on R.
(d) Let {R} be an exhaustion of R and f be continuous and p-

harmonizable on R. Then h,-limH’, on R.

(e) If f is a bounded continuous function and has the property
(V) (or (V)0), then f is a p-Wiener function (or p-Wiener potential).

4. From now on, we denote by BW(R)the totality of bounded
continuous p-Wiener functions on R and by BH(R) the totality of
bounded p-harmonic functions on R. As to the dependence of the
class BW(R) (or BWo(R)) on p we have the following lemmas.

Lernma 1. Let p and q be two densities on R such that q<_p on
R. Then BWqo(R) BWo(R) and BW(R) BW(R).

Proof. Let f be a real-valued bounded function on R. Then it
-pR -pR Ris easily seen that IV2,0c W’x,0 and W’,0c W, and so that

-, <-, and , -,eh,0_h],0 <__hm,0. Hence we have h,<,/0,_ and
replacing f by --f, we obtain that h,_>h,/0. By these facts we
have BW(R)BWo(R). Let f be a function in BW(R). Then by
(a), f/ =max(f, 0) is also a function in BW(R). Hence by the above
assertion we see that f/ h, is a function in BWo(R) On the other
hand, h, is a non-negative p-superharmonic function and so by (b)$+

it is a function in BW(R). Hence f/ is a f,unction in BW(R).
Similarly f---max (-f, 0) is a function in BW(R), so that BW(R)
cBWp(R).

1) The p-harmonizability is defined analogously to the usual one: We set

a={s; p-superharmonic on 9 and s>_f on 9-K for some. compact set K},

w_ (s; -s e _f) and a(a)=inf (s(a); s e a), _ha(a)_sup {s(a); se

When a=_ha=ha, we say that f is p-harmonizable on 9; we note that h
is p-harmonic on 9.

2) We always consider a regular exhaustion.

3) We denote by H2n a function continuous on n and p-harmonic on Rn
and equal to f on Rn.

4) It means that the sequence {HRn} converges (or converges to 0)for any
exhaustion {Rn} of R.
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Lemma 2. Let p be a density on R. Then BWo(R)=BWg(R)
for any positive constant .

Proof. We may assume that 0a<_l. By Lemma 1, we have
only to show that BWo(R)BWg(R). Let f be a function in BWo(R).
Without loss of generality we may assume that 0<_f_<l. It is easy
to see that

on R for any exhaustion (R} o R. By (d), limH,’-0 and so f
has the property (V)g. Hence by (e), f is a function in BWg(R).

As to the dependence o the class BH(R) on a density p, H. L.
Royden [9] proved the ollowing lemma.

Lemma 3. If p and q are two densities on R satisfying the con-
dition (I), then there exists an isomorphism of BH(R) onto BHq(R).

We shall extend this fact to the class BW(R).
Theorem 1. If p and q are two densities on R satisfying the

condition (I), then BW,(R) and BWq(R) are isomorphic.

Proof. By Lemma 3 there exists an isomorphism 7: of BH(R)
onto BHq(R). Since -q<_pq on R, we have BWo(R)-BWqo(R)
by Lemmas 1 and 2. Let f be a function in BW(R), then there exists
uniquely a function f0 in BWo(R) such that f-h,a+f0. We define a
mapping p as follows"

p(f)-(h")/fo
Then it is easy to see that p is an isomorphism of BW(R) onto BWq(R).

5. M. Nakai [6] proved that if two densities p and q satisfy the
condition (II), then BH(R) and BHq(R) are isomorphic.

Using his method we shall prove the ollowing

Theorem 2. If p and q satisfy the condition (II),
BW(R)-BW(R).

Proof. Let {R} be an exhaustion o R. Given a real-valued
bounded continuous unction f on R, we define a transformation Tf
as follows"

1Tf(zo)-- f(Zo) + q(z))gq;(z)f(z)gxdy

We also define a transformation Tf for a function f on R as follow"
I II (P(z)--q(z))gq’(z)f(z)dxdyTnf(Zo) f(Zo) + --These are well-defined in virtue of the condition (II). By the Green

formula we have easily that TH,’-H,. M. Nakai [6] proved
that if a uniformly bounded sequence {f} of continuous functions f
on Rn converges to a function f uniformly on each compact subset,
then for each point z0 in R
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(**) Tf(zo)-- lim Tnf(Zo).
I f is a function in BW(R), then the sequence (H,’) is uniformly
bounded and by (d), {H,R} converges to h,R uniformly on each com-
pact subset, hence by the above assertion, lim TH,-- Th,, so that

the sequence {H,’} converges to Th,, namely f has the property
(V)q. Thus BWp(R)cBWq(R). By replacing p and q we have BWq(R)
BW,(R) and BW,(R) BWq(R).
Remark. As M. Nakai [6] remarked, (**) can be proved under

the following weaker condition"

(II)’ f[ [p(z)-- q(z) (g(z) + g;(z))dxdy< c
R

for some points z0 and z in R. Therefore we have the equality BW(R)
BW(R) for any p and q satisfying the condition (II)’.

6. Let R* be a BW(R)-compactification of R and F, be a
harmonic boundary of R* (cf. [1]).

As to the dependence of R*, on a density p, we have the following
fact as a corollary of Nakai’s theorem (see [7]).

Theorem 3). Consider arbitrary two Riemann surfaces R and
R’. Let p be a density on R and p’ be a density on R’. If BW(R)
and BW’(R’) are isomorphic, then there exists a homeomorphism *
of R* onto ’*R such that *(F,) F’Wp

By Theorems 1, 2 and 3, we have
Theorem 4. If p and q are two densities on R satisfying the

condition (I) or (II), then there exists a homeomorphism * of R*,
onto R* such that *(F)-F.

Remark. (i) By the remark on Theorem 2 we see that the condi-
tion (II) can be replaced by the weaker condition (II)’.

(ii) When p or q is identically zero in the condition (II) (or (II)’),
R is assumed to be a hyperbolic Riemann surface.
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