151. On Wiener Compactification of a Riemann Surface Associated with the Equation $\Delta u = pu$

By Hidematu TANAKA Mathematical Institute, Nagoya University

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 13, 1969)

1. We consider an elliptic partial differential equation

(*)
$$\Delta u = pu$$

on a Riemann surface R, where $\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2$ and p is a nonnegative and continuously differentiable function of local parameters z such that the expression $p(z) |dz|^2$ is invariant under the change of local parameters z. We call such a function p a density on R.

The investigation of the global theory of (*) was begun by M. Ozawa [8] and continued by many others (for example, L. Myrberg [4], H. L. Royden [9], M. Nakai [5] [6] and F. Maeda [3]).

Associated with the equation (*), Wiener functions and the Wiener compactification R_{WP}^* of R are discussed; more generally the Wiener compactification of harmonic spaces is studied by C. Constantinescu and A. Cornea [2]. In this note we shall examine how the Wiener compactification depends on a density p, and we shall give the following result (Theorem 4); If p and q are two densities on R satisfying

(I)
$$\alpha^{-1}q \le p \le \alpha q$$

on R for some constant $\alpha \geq 1$, or

(II)
$$\iint_{R} |p(z) - q(z)| \, dx dy < \infty$$

then there exists a homeomorphism Φ^* of $R_{W^p}^*$ onto $R_{W^q}^*$ such that $\Phi^*(\Gamma_{W^p}) = \Gamma_{W^q}$, where Γ_{W^p} (or Γ_{W^q}) is a harmonic boundary of $R_{W^q}^*$ (or $R_{W^q}^*$).

2. Let Ω be an open subset of a Riemann surface R. A function u on Ω is called *p*-harmonic on Ω if u is twice continuously differentiable and satisfies (*). A *p*-superharmonic function is defined as usual (see [3]). We know that a twice continuously differentiable function s on Ω is *p*-superharmonic on Ω if and only if $\Delta s - ps \le 0$ on Ω . Let a be an arbitrary point on R. L. Myrberg [4] proved that if $p \equiv 0$, there exists always the Green function of R with pole at a for the equation (*). We denote it by $g_a^{p,R}$.

3. A real-valued function f on R is called a p-Wiener function when f is quasicontinuous and has a p-superharmonic majorant and

for any subdomain Ω , f is p-harmonizable on $\Omega^{(1)}$: the totality of p-Wiener functions on R is denoted by $W^p(R)$. A p-Weiner function fwith $h_f^{p,R} = 0^{(1)}$ is called a p-Wiener potential on R: the totality of p-Wiener potentials on R is denoted by $W_0^p(R)$. We have the following facts similarly to [1].

(a) The class $W^p(R)$ (or $W^p_0(R)$) is a vector lattice with respect to maximum and minimum.

(b) A non-negative p-superharmonic function is a p-Wiener function.

(c) A bounded *p*-Wiener function f has a unique decomposition $f = h_f^{P,R} + f_0$, where f_0 is a bounded *p*-Wiener potential on R.

(d) Let $\{R_n\}$ be an exhaustion²⁾ of R and f be continuous and p-harmonizable on R. Then $h_f^{p,R} = \lim H_f^{p,R_n^{3)}}$ on R.

(e) If f is a bounded continuous function and has the property $(V)^p$ (or $(V)_0^p$),⁴⁾ then f is a p-Wiener function (or p-Wiener potential).

4. From now on, we denote by $BW^p(R)$ the totality of bounded continuous *p*-Wiener functions on *R* and by $BH^p(R)$ the totality of bounded *p*-harmonic functions on *R*. As to the dependence of the class $BW^p(R)$ (or $BW^p_0(R)$) on *p* we have the following lemmas.

Lemma 1. Let p and q be two densities on R such that $q \le p$ on R. Then $BW_0^q(R) \subset BW_0^p(R)$ and $BW^q(R) \subset BW^p(R)$.

Proof. Let f be a real-valued bounded function on R. Then it is easily seen that $\overline{W}_{\max(f,0)}^{q,R} \subset \overline{W}_{p,R}^{p,R}$ and $\overline{W}_{\max(f,0)}^{p,R} \subset \overline{W}_{f}^{p,R}$ and so that $\overline{h}_{\max(f,0)}^{p,R} \leq \overline{h}_{\max(f,0)}^{q,R}$ and $\overline{h}_{f}^{p,R} \leq \overline{h}_{\max(f,0)}^{p,R}$. Hence we have $\overline{h}_{f}^{p,R} \leq \overline{h}_{f}^{q,R} \lor 0$, and replacing f by -f, we obtain that $h_{f}^{p,R} \geq h_{f}^{q,R} \land 0$. By these facts we have $BW_{0}^{q}(R) \subset BW_{0}^{p}(R)$. Let f be a function in $BW^{q}(R)$. Then by (a), $f^{+} = \max(f, 0)$ is also a function in $BW^{q}(R)$. Hence by the above assertion we see that $f^{+} - h_{f^{+}}^{q,R}$ is a function in $BW_{0}^{p}(R)$. On the other hand, $h_{f^{+}}^{q,R}$ is a non-negative p-superharmonic function and so by (b) it is a function in $BW^{p}(R)$. Hence f^{+} is a function in $BW^{p}(R)$. Similarly $f^{-} = \max(-f, 0)$ is a function in $BW^{p}(R)$, so that $BW^{q}(R)$

2) We always consider a regular exhaustion.

3) We denote by $H_f^{PR_n}$ a function continuous on \overline{R}_n and p-harmonic on R_n and equal to f on ∂R_n .

4) It means that the sequence $\{H_f^{PR_n}\}$ converges (or converges to 0) for any exhaustion $\{R_n\}$ of R.

¹⁾ The p-harmonizability is defined analogously to the usual one: We set $\overline{w}_{f}^{P,\varrho} = \{s; p$ -superharmonic on Ω and $s \ge f$ on Ω -K for some compact set $K\}$, $\underline{w}_{f}^{P,\varrho} = \{s; -s \in \overline{w}_{-f}^{P,\varrho}\}$ and $\overline{h}_{f}^{P,\varrho}(a) = \inf \{s(a); s \in \overline{w}_{f}^{P,\varrho}\}, \underline{h}_{f}^{P,\varrho}(a) = \sup \{s(a); s \in \underline{w}_{f}^{P,\varrho}\}$. When $\overline{h}_{f}^{P,\varrho} = \underline{h}_{f}^{P,\varrho} = h_{f}^{P,\varrho}$, we say that f is p-harmonizable on Ω ; we note that $h_{f}^{P,\varrho}$ is p-harmonic on Ω .

No. 8] Riemann Surface Associated with Equation $\Delta u = pu$

Lemma 2. Let p be a density on R. Then $BW_0^p(R) = BW_0^{\alpha p}(R)$ for any positive constant α .

Proof. We may assume that $0 \le \alpha \le 1$. By Lemma 1, we have only to show that $BW_0^p(R) \subset BW_0^{\alpha p}(R)$. Let f be a function in $BW_0^p(R)$. Without loss of generality we may assume that $0 \le f \le 1$. It is easy to see that

$$H_{f}^{p,R_{n}} \leq H_{f}^{\alpha p,R_{n}} \leq (H_{f}^{p,R_{n}})^{\alpha}$$

on R_n for any exhaustion $\{R_n\}$ of R. By (d), $\lim_{n \to \infty} H_f^{p,R_n} = 0$ and so f has the property $(V)_0^{\alpha p}$. Hence by (e), f is a function in $BW_0^{\alpha p}(R)$.

As to the dependence of the class $BH^{p}(R)$ on a density p, H. L. Royden [9] proved the following lemma.

Lemma 3. If p and q are two densities on R satisfying the condition (I), then there exists an isomorphism π of $BH^{p}(R)$ onto $BH^{q}(R)$. We shall extend this fact to the class $BW^{p}(R)$.

Theorem 1. If p and q are two densities on R satisfying the condition (I), then $BW^{p}(R)$ and $BW^{q}(R)$ are isomorphic.

Proof. By Lemma 3 there exists an isomorphism π of $BH^{p}(R)$ onto $BH^{q}(R)$. Since $\alpha^{-1}q \leq p \leq \alpha q$ on R, we have $BW_{0}^{p}(R) = BW_{0}^{q}(R)$ by Lemmas 1 and 2. Let f be a function in $BW^{p}(R)$, then there exists uniquely a function f_{0} in $BW_{0}^{p}(R)$ such that $f = h_{f}^{p,R} + f_{0}$. We define a mapping ρ as follows:

$$\rho(f) = \pi(h_f^{p,R}) + f_0$$

Then it is easy to see that ρ is an isomorphism of $BW^{p}(R)$ onto $BW^{q}(R)$.

5. M. Nakai [6] proved that if two densities p and q satisfy the condition (II), then $BH^{p}(R)$ and $BH^{q}(R)$ are isomorphic.

Using his method we shall prove the following

Theorem 2. If p and q satisfy the condition (II),

 $BW^p(R) = BW^q(R).$

Proof. Let $\{R_n\}$ be an exhaustion of R. Given a real-valued bounded continuous function f on R, we define a transformation Tf as follows:

$$Tf(z_0) = f(z_0) + \frac{1}{2\pi} \iint_R (p(z) - q(z))g_{z_0}^{q,R}(z)f(z)dxdy$$

We also define a transformation $T_n f$ for a function f on R_n as follow:

$$T_n f(z_0) = f(z_0) + \frac{1}{2\pi} \iint_{R_n} (p(z) - q(z)) g_{z_0}^{q,R_n}(z) f(z) dx dy$$

These are well-defined in virtue of the condition (II). By the Green formula we have easily that $T_n H_f^{p,R_n} = H_f^{q,R_n}$. M. Nakai [6] proved that if a uniformly bounded sequence $\{f_n\}$ of continuous functions f_n on R_n converges to a function f uniformly on each compact subset, then for each point z_0 in R

677

$$(**) Tf(z_0) = \lim T_n f_n(z_0).$$

If f is a function in $BW^p(R)$, then the sequence $\{H_{f'}^{p,R_n}\}$ is uniformly bounded and by (d), $\{H_{f'}^{p,R_n}\}$ converges to $h_{f'}^{p,R}$ uniformly on each compact subset, hence by the above assertion, $\lim_{n\to\infty} T_nH_{f'}^{p,R_n} = Th_{f'}^{p,R}$, so that the sequence $\{H_{f'}^{q,R_n}\}$ converges to $Th_{f'}^{p,R}$, namely f has the property $(V)^q$. Thus $BW^p(R) \subset BW^q(R)$. By replacing p and q we have $BW^q(R)$ $\subset BW^p(R)$ and $BW^p(R) = BW^q(R)$.

Remark. As M. Nakai [6] remarked, (**) can be proved under the following weaker condition:

(II)'
$$\iint_{R} |p(z) - q(z)| (g_{z_{0}}^{p,R}(z) + g_{z_{1}}^{q,R}(z)) dx dy < \infty$$

for some points z_0 and z_1 in R. Therefore we have the equality $BW^p(R) = BW^q(R)$ for any p and q satisfying the condition (II)'.

6. Let $R_{W^p}^*$ be a $BW^p(R)$ -compactification of R and Γ_{W^p} be a harmonic boundary of $R_{W^p}^*$ (cf. [1]).

As to the dependence of $R_{W^p}^*$ on a density p, we have the following fact as a corollary of Nakai's theorem (see [7]).

Theorem 3⁵⁾. Consider arbitrary two Riemann surfaces R and R'. Let p be a density on R and p' be a density on R'. If $BW^p(R)$ and $BW^{p'}(R')$ are isomorphic, then there exists a homeomorphism Φ^* of $R^*_{W^p}$ onto $R'^*_{W^{p'}}$ such that $\Phi^*(\Gamma_{W^p}) = \Gamma'_{W^{p'}}$.

By Theorems 1, 2 and 3, we have

Theorem 4. If p and q are two densities on R satisfying the condition (I) or (II), then there exists a homeomorphism Φ^* of $R_{W^p}^*$ onto $R_{W^q}^*$ such that $\Phi^*(\Gamma_{W^p}) = \Gamma_{W^q}$.

Remark. (i) By the remark on Theorem 2 we see that the condition (II) can be replaced by the weaker condition (II)'.

(ii) When p or q is identically zero in the condition (II) (or (II)'), R is assumed to be a hyperbolic Riemann surface.

References

- [1] C. Constantinescu and A. Cornea: Ideale Ränder Riemannscher Flächen. Springer Verlag (1963).
- [2] ——: Compactification of harmonic spaces. Nagoya Math. J., 25, 1-57 (1965).
- [3] F. Maeda: Boundary value problems for the equation $\Delta u qu = 0$ with respects to an ideal boundary. J. Sci. Hiroshima Univ., Ser. A. I., **32**, 85-146 (1968).
- [4] L. Myrberg: Über die Existenz der Greescher Funktion der Gleichung $\Delta u = c(p)u$ auf Riemannscher Flächen. Ann. Acad. Sci. Fenn. Ser. A. I., **170** (1954).

⁵⁾ In case that $p=p'\equiv 0$, Theorem 3 is reduced to Nakai's theorem.

- [5] M. Nakai: The space of non-negative solutions of the equation $\Delta u = pu$ on a Riemann surface. Kôdai Math. Sem. Rep., **12**, 151–178 (1960).
- [6] ——: The space of bounded solution of the equation $\Delta u = pu$ on a Riemann surface. Proc. Japan Acad., **36**, 267–272 (1960).
- [7] ——: On Wiener homeomorphism between Riemann surfaces. Proc. Japan Acad., 40, 468–473 (1964).
- [8] M. Ozawa: Classification of Riemann surfaces. Kôdai Math. Sem. Rep., 4, 63-76 (1952).
- [9] H. L. Royden: The equation $\Delta u = pu$, and the classification of Riemann surface. Ann. Acad. Sci. Fenn. A. I., **271** (1959).