150. 5-dimensional Orientable Submanifolds of R⁷. II

By Minoru KOBAYASHI

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 13, 1969)

1. Introduction. In our previous paper [4], we showed that, using the vector cross product induced by Cayley numbers, any 5-dimensional orientable submanifold M of R^{7} admits an almost contact structure.

In this paper, denoting this almost contact structure by (\emptyset, ξ, η) , we shall study the torsion of \emptyset . First, we shall prove that if M is totally geodesic then the torsion of \emptyset vanishes identically (Theorem 1). Secondly, we consider the converse problem. Unfortunately, this is not true in general. But we shall prove that if M is totally umbilical, then the vanishing of the torsion of \emptyset implies that M is totally geodesic (Theorem 2).

2. Basic informations.

(a) Almost contact manifolds.

Let *M* be a (2n+1)-dimensional C^{∞} manifold with an almost contact structure (\emptyset, ξ, η) . Then we have, by definition,

(1) $\eta(\xi) = 1,$

where I is the identity transformation field.

By above relations, it can be easily shown that the rank of \emptyset is 2n.

We denote the associated Riemannian metric of (\emptyset, ξ, η) by \langle , \rangle . Then it satisfies

(4)

 $\eta{=}{\langle{arsigma},{\,\cdot\,
angle},}$

(5) $\langle \emptyset X, \emptyset Y \rangle = \langle X, Y \rangle - \eta(X)\eta(Y)$, for any vector fields X, Y on M. The tensor N(X, Y) defined by

(6)
$$N(X, Y) = [X, Y] + \emptyset[\emptyset X, Y] + \emptyset[X, \emptyset Y] - [\emptyset X, \emptyset Y] - \{X \cdot \eta(Y) - Y \cdot \eta(X)\}\xi$$

is called the *torsion* of \emptyset and M is called *normal* if N vanishes identically.

(b) The vector cross product on \mathbb{R}^{7} .

The vector cross product on R^{τ} is a linear map $P: V(R^{\tau}) \times V(R^{\tau}) \rightarrow V(R_{\tau})$ (writing here $P(\vec{X}, \vec{Y}) = \vec{X} \otimes \vec{Y}$) satisfing the following conditions:

- (7) $\bar{X}\otimes\bar{Y}=-\bar{Y}\otimes\bar{X},$
- (8) $\langle \vec{X} \otimes \vec{Y}, \vec{Z} \rangle = \langle \vec{X}, \vec{Y} \otimes \vec{Z} \rangle,$

No. 8] 5-dimensional Orientable Submanifolds of R^7 . II

$$(9) \quad (\bar{X} \otimes \bar{Y}) \otimes \bar{Z} + X \otimes (\bar{Y} \otimes \bar{Z}) = 2 \langle \bar{X}, \bar{Z} \rangle \bar{Y} - \langle \bar{Y}, \bar{Z} \rangle \bar{X} - \langle \bar{X}, \bar{Y} \rangle \bar{Z},$$

(10)
$$\bar{\nabla}_{\bar{x}} (\bar{Y} \otimes \bar{Z}) = \bar{\nabla}_{\bar{x}} \bar{Y} \otimes \bar{Z} + \bar{Y} \otimes \bar{\Gamma}_{\bar{x}} \bar{Z},$$

where $V(R^{\tau})$ is the ring of differentiable vector fields on R^{τ} , $\overline{X}, \overline{Y}, \overline{Z} \in V(R^{\tau})$ and \overline{V} is the covariant differentiation of R^{τ} .

3. 5-dimensional orientable totally geodesic and totally umbilical submanifolds of R^{7} .

Let M be a 5-dimensional orientable submanifold of R^7 . Then there exist locally defined mutually orthogonal differentiable unit normal vector fields C_1 , C_2 to M.

For any $X, Y \in V(M)$, we can put

(11)
$$\begin{cases} \bar{\nabla}_{X}C_{1} = -A_{1}X + s(X)C_{2} \\ \bar{\nabla}_{X}C_{2} = -A_{2}X - s(X)C_{1}, \end{cases}$$

where $-A_1X$ (resp. $-A_2X$) is the tangential part of $\overline{\nu}_X C_1$ (resp. $\overline{\nu}_X C_2$) and s is a 1-form on M.

Then the equation of Weingarten can be taken of the form

(12) $\overline{\nabla}_{X}Y = \nabla_{X}Y + \langle A_{1}X, Y \rangle C_{1} + \langle A_{2}X, Y \rangle C_{2},$

where $\mathcal{P}_X Y$ is the tangential part of $\overline{\mathcal{P}}_X Y$. It is well known that \mathcal{P} is the covariant differentiation of M with respect to the induced Riemannian metric and A_1, A_2 are symmetric (1,1) type tensors (e.g. [3]).

We put

$$\xi = C_1 \otimes C_2,$$

(14) $\eta(X) = \langle C_1 \otimes C_2, X \rangle,$

(15) $\emptyset(X) = X \otimes (C_1 \otimes C_2).$

Then, as we showed in [4], (\emptyset , ξ , η , \langle , \rangle) gives an almost contact metric structure on M.

Proposition 1. For $\xi = C_1 \otimes C_2$ and any $X, Y \in V(M)$, we have the following identities:

$$\begin{array}{ll} (16) & (\overline{\mathcal{V}}_{X}Y\otimes\xi)\otimes\xi=\langle\overline{\mathcal{V}}_{X}Y,\,\xi\rangle\xi-\overline{\mathcal{V}}_{X}Y.\\ (17) & N(X,\,Y)=(Y\otimes\overline{\mathcal{V}}_{X}\xi-X\otimes\overline{\mathcal{V}}_{Y}\xi)\otimes\xi+X\otimes\overline{\mathcal{V}}_{\theta Y}\xi-Y\otimes\overline{\mathcal{V}}_{\theta x}\xi\\ & +(\langle X,\,\overline{\mathcal{V}}_{Y}\xi\rangle)\otimes\xi+X\otimes\overline{\mathcal{V}}_{\theta y}\xi-Y\otimes\overline{\mathcal{V}}_{\theta x}\xi)\\ & +(\langle X,\,\overline{\mathcal{V}}_{Y}\xi\rangle-\langle Y,\,\overline{\mathcal{V}}_{X}\xi\rangle)\xi.\\ \mbox{Proof. For (16), we have} \\ (\overline{\mathcal{V}}_{X}Y\otimes\xi)\otimes\xi=(\overline{\mathcal{V}}_{X}Y\otimes\xi)\otimes\xi+\overline{\mathcal{V}}_{X}Y\otimes(\xi\otimes\xi)\\ & =2\langle\overline{\mathcal{V}}_{X}Y,\,\xi\rangle\xi-\langle\xi,\,\xi\rangle\overline{\mathcal{V}}_{X}Y-\langle\overline{\mathcal{V}}_{X}Y,\,\xi\rangle\xi & (by\ (9))\\ & =\langle\overline{\mathcal{V}}_{X}Y,\,\xi\rangle\xi-\overline{\mathcal{V}}_{X}Y.\\ \mbox{For (17), we have} \\ N(X,\,Y)=[X,\,Y]+\theta[\emptyset X,\,Y]+\theta[X,\,\emptyset Y]-[\emptyset X,\,\emptyset Y]\\ & -\{X\cdot\eta(Y)-Y\cdot\eta(X)\}\xi\\ & =\overline{\mathcal{V}}_{X}Y-\overline{\mathcal{V}}_{Y}X+\overline{\mathcal{V}}_{\theta X}Y\otimes\xi-\overline{\mathcal{V}}_{Y}\emptysetX\otimes\xi+\overline{\mathcal{V}}_{X}\emptysetY\otimes\xi\\ & -\overline{\mathcal{V}}_{\theta Y}X\otimes\xi-\overline{\mathcal{V}}_{\theta X}QY+\overline{\mathcal{V}}_{\theta Y}\otimes\xi\xi-(X\otimes\overline{\mathcal{V}}_{Y}\xi)\otimes\xi\\ & +(\overline{\mathcal{V}}_{X}Y\otimes\xi)\otimes\xi+(Y\otimes\overline{\mathcal{V}}_{X}\xi)\otimes\xi-\overline{\mathcal{V}}_{\theta X}Y\otimes\xi-\overline{\mathcal{V}}_{\theta X}Y\otimes\xi\\ & -Y\otimes\overline{\mathcal{V}}_{\theta x}\xi+\overline{\mathcal{V}}_{\theta Y}X\otimes\xi+X\otimes\overline{\mathcal{V}}_{\theta y}\xi-\{X\cdot\eta(Y)-Y\cdot\eta(X)\}\xi \end{array}$$

M. KOBAYASHI

Q.E.D.

$$= \bar{\mathbb{P}}_{X}Y - \bar{\mathbb{P}}_{Y}X - (\langle \bar{\mathbb{P}}_{Y}X, \xi \rangle \xi - \bar{\mathbb{P}}_{Y}X) - (X \otimes \bar{\mathbb{P}}_{Y}\xi) \otimes \xi \\ + (\langle \bar{\mathbb{P}}_{X}Y, \xi \rangle \xi - \bar{\mathbb{P}}_{X}Y) + (Y \otimes \bar{\mathbb{P}}_{X}\xi) \otimes \xi - Y \otimes \bar{\mathbb{P}}_{\emptyset X}\xi \\ + X \otimes \bar{\mathbb{P}}_{\emptyset Y}\xi - (\langle \mathbb{P}_{X}Y, \xi \rangle + \langle Y, \mathbb{P}_{X}\xi \rangle - \langle \mathbb{P}_{Y}X, \xi \rangle \\ - \langle X, \mathbb{P}_{Y}\xi \rangle) \xi \qquad (by (16)) \\= (Y \otimes \bar{\mathbb{P}}_{X}\xi - X \otimes \bar{\mathbb{P}}_{Y}\xi) \otimes \xi + X \otimes \bar{\mathbb{P}}_{\emptyset Y}\xi - Y \otimes \bar{\mathbb{P}}_{\emptyset X}\xi \\ + (\langle X, \mathbb{P}_{Y}\xi \rangle - \langle Y, \mathbb{P}_{X}\xi \rangle) \xi \qquad Q.E.D.$$
Proposition 2. For $\xi = C \otimes C$ and any $X \in V(M)$ are have

Proposition 2. For $\xi = C_1 \otimes C_2$ and any $X \in V(M)$, we have $\bar{V}_{x}\xi = -A_{1}X \otimes C_{2} + A_{2}X \otimes C_{1},$ (18)

so that consequently

 $\nabla_X \xi + \langle A_1 X, \xi \rangle C_1 + \langle A_2 X, \xi] C_2 = -A_1 X \otimes C_2 + A_2 X \otimes C_1$ (19)holds good.

Proof. For (18), we have by (10) and (11), $\bar{\nabla}_{x}\xi = \bar{\nabla}_{x}(C_{1}\otimes C_{2})$ $= \overline{V}_{x}C_{1}\otimes C_{2} + C_{1}\otimes \overline{V}_{x}C_{2}$ $=(-A_1X+s(X)C_2)\otimes C_2+C_1\otimes (-A_2X-s(X)C_1)$ $= -A_1 X \otimes C_2 + s(X) C_2 \otimes C_2 - C_1 \otimes A_2 X - C_1 \otimes s(X) C_1$ $= -A_1 X \otimes C_2 + A_2 X \otimes C_1.$

And, replacing Y by ξ in (12) we have the left hand side of (19), from which (19) follows immediately. Q.E.D.

Theorem 1. Let M be a 5-dimensional orientable totally geodesic submanifold of R^{7} . Then the torsion of \emptyset vanishes identically.

Proof. Since M is totally geodesic, we have $A_1 = A_2 = 0$, which implies $\bar{\nabla}_x \xi = 0$ by (18) of Proposition 2. Hence we have N = 0 by (17) of Proposition 1. Q.E.D.

Proposition 3. For $\xi = C_1 \otimes C_2$, we have the following identities: (20) $C_1 \otimes \xi = -C_2$. (2) $=C_1$.

1)
$$C_2 \otimes \xi$$
:

Proof. For (20), we have $C_1 \otimes \hat{\xi} = C_1 \otimes (C_1 \otimes C_2)$ $=C_1\otimes(C_1\otimes C_2)+(C_1\otimes C_1)\otimes C_2$ $=2\langle C_1, C_2\rangle C_1-\langle C_1, C_2\rangle C_1-\langle C_1, C_1\rangle C_2$ $= -C_{2}.$

Similarly, we have $C_2 \otimes \xi = C_1$.

Theorem 2. Let M be a 5-dimensional orientable totally umbilical submanifold of R^{τ} . If the torsion of ϕ vanishes identically, then M is totally geodesic.

Proof. Making an inner product N(X, Y) with ξ , and using (8), we have

 $\langle X, \overline{\nu}_{\mathscr{O}_Y} \xi \otimes \xi \rangle - \langle Y, \overline{\nu}_{\mathscr{O}_X} \xi \otimes \xi \rangle + \langle X, \overline{\nu}_Y \xi \rangle - \langle Y, \overline{\nu}_X \xi \rangle = 0.$ (22)

On the other hand, since M is totally umbilical we have $A_1 = \lambda_1 I$ and $A_2 = \lambda_2 I$, for some scalars λ_1 and λ_2 . Hence, we have by (18),

 $\bar{V}_{\theta Y} \hat{\xi} = -\lambda_1 \emptyset Y \otimes C_2 + \lambda_2 \emptyset Y \otimes C_1.$

Thus, we have

Hence, we have

$$\begin{array}{l} \langle X, \bar{\mathcal{V}}_{\boldsymbol{\varnothing}Y} \boldsymbol{\xi} \otimes \boldsymbol{\xi} \rangle = \langle X, -\lambda_1 \langle Y, \boldsymbol{\xi} \rangle C_1 - \lambda_1 Y \otimes C_2 - \lambda_2 \langle Y, \boldsymbol{\xi} \rangle C_2 + \lambda_2 Y \otimes C_1 \rangle \\ = \langle X, -\lambda_1 Y \otimes C_2 + \lambda_2 Y \otimes C_1 \rangle \\ = \langle X, \bar{\mathcal{V}}_Y \boldsymbol{\xi} \rangle \\ = \langle X, \bar{\mathcal{V}}_Y \boldsymbol{\xi} \rangle \\ = \langle X, \bar{\mathcal{V}}_Y \boldsymbol{\xi} \rangle. \\ \text{Similarly, we have } \langle Y, \bar{\mathcal{V}}_{\boldsymbol{\vartheta}X} \boldsymbol{\xi} \otimes \boldsymbol{\xi} \rangle = \langle Y, \bar{\mathcal{V}}_X \boldsymbol{\xi} \rangle. \\ \text{Therefore, (22) reduces to} \end{array}$$

 $\langle X, \nabla_Y \xi \rangle - \langle Y, \nabla_X \xi \rangle = 0.$ (23)

But, on the other hand, we have

$$egin{aligned} &\langle X, arPsi_Y \xi
angle + \langle Y, arPsi_X \xi
angle = &\langle X, -\lambda_1 Y \otimes C_2 + \lambda_2 Y \otimes C_1
angle \ &+ \langle Y, -\lambda_1 X \otimes C_2 + \lambda_2 X \otimes C_1
angle \ &= -\lambda_1 \langle X \otimes Y + Y \otimes X, C_2
angle + \lambda_2 \langle X \otimes Y + Y \otimes X, C_1
angle \ &= 0, \end{aligned}$$

which, together with (23), implies $\nabla_x \xi = 0$.

Thus, from (19), we have

 $\lambda_1 \langle X, \xi \rangle C_1 + \lambda_2 \langle X, \xi \rangle C_2 = -\lambda_1 X \otimes C_2 + \lambda_2 X \otimes C_1.$

Applying $\otimes C_1$ from the right on both sides of this equation, we have

$$\lambda_2 \langle X, \xi \rangle C_2 \otimes C_1 = -\lambda_1 (X \otimes C_2) \otimes C_1 + \lambda_2 (X \otimes C_1) \otimes C_1 \\ = \lambda_2 X \otimes (C_2 \otimes C_1) - \lambda_2 X \qquad \text{(by (9))}$$

that is,

(24)
$$\lambda_2 \langle X, \xi \rangle \xi = \lambda_1 X \otimes \xi + \lambda_2 X.$$

Making an inner product (24) with X, we have
 $\lambda_2 \langle X, \xi \rangle^2 = \lambda_2 \langle X, X \rangle.$
Since $\eta(X) = \langle X, \xi \rangle$, the above equation reduces to
 $\lambda_2 \langle \emptyset X, \emptyset X \rangle = 0,$

by virtue of (5).

Since the rank of \emptyset is 4 and \langle , \rangle is a Riemannian metric, we can conclude $\lambda_2 = 0$.

Similarly, we have $\lambda_1 = 0$, which shows that *M* is totally geodesic. Q.E.D.

No. 8]

_

M. KOBAYASHI

References

- [1] A. Gray: Some examples of almost Hermitian manifolds. Illinois J. of Math., 10, 353-366 (1966).
- [2] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. New York, John Wiley (1963).
- [3] M. Kobayashi: On submanifolds in spaces of constant and constant holomorphic curvature. Proc. Japan Acad., 44, 334-339 (1968).
- [4] —: 5-dimensional orientable submanifolds of \mathbb{R}^7 . I. Proc. Japan Acad., 45, 582-585 (1969).
- [5] S. Sasaki: Almost contact manifolds, Part I. A Lecture Note, Math. Institute, Tohoku Univ. (1965).