150. 5-dimensional Orientable Submanifolds of R^{7}. II

By Minoru Kobayashi
Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô Kunugi, M. J. A., Oct. 13, 1969)

1. Introduction. In our previous paper [4], we showed that, using the vector cross product induced by Cayley numbers, any 5-dimensional orientable submanifold M of R^{7} admits an almost contact structure.

In this paper, denoting this almost contact structure by (\varnothing, ξ, η), we shall study the torsion of \varnothing. First, we shall prove that if M is totally geodesic then the torsion of \varnothing vanishes identically (Theorem 1). Secondly, we consider the converse problem. Unfortunately, this is not true in general. But we shall prove that if M is totally umbilical, then the vanishing of the torsion of \varnothing implies that M is totally geodesic (Theorem 2).

2. Basic informations.

(a) Almost contact manifolds.

Let M be a $(2 n+1)$-dimensional C^{∞} manifold with an almost contact structure (\varnothing, ξ, η). Then we have, by definition,

$$
\begin{equation*}
\emptyset(\xi)=0, \quad \eta \circ \emptyset=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\emptyset^{2}=-I+\eta(\cdot) \xi \tag{2}
\end{equation*}
$$

where I is the identity transformation field.
By above relations, it can be easily shown that the rank of \emptyset is $2 n$.
We denote the associated Riemannian metric of (\varnothing, ξ, η) by \langle,$\rangle .$ Then it satisfies

$$
\begin{equation*}
\eta=\langle\xi, \cdot\rangle, \tag{4}
\end{equation*}
$$

(5) $\langle\emptyset X, \emptyset Y\rangle=\langle X, Y\rangle-\eta(X) \eta(Y)$, for any vector fields X, Y on M.

The tensor $N(X, Y)$ defined by

$$
\begin{equation*}
N(X, Y)=[X, Y]+\emptyset[\varnothing X, Y]+\varnothing[X, \varnothing Y]-[\varnothing X, \varnothing Y] \tag{6}
\end{equation*}
$$

$$
-\{X \cdot \eta(Y)-Y \cdot \eta(X)\} \xi
$$

is called the torsion of \emptyset and M is called normal if N vanishes identically.
(b) The vector cross product on R^{7}.

The vector cross product on R^{7} is a linear map $P: V\left(R^{7}\right) \times V\left(R^{7}\right)$ $\rightarrow V\left(R_{7}\right)$ (writing here $\left.P(\bar{X}, \bar{Y})=\bar{X} \otimes \bar{Y}\right)$ satisfing the following conditions:

$$
\begin{equation*}
\bar{X} \otimes \bar{Y}=-\bar{Y} \otimes \bar{X}, \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\langle\bar{X} \otimes \bar{Y}, \bar{Z}\rangle=\langle\bar{X}, \bar{Y} \otimes \bar{Z}\rangle, \tag{8}
\end{equation*}
$$

(9) $(\bar{X} \otimes \bar{Y}) \otimes \bar{Z}+X \otimes(\bar{Y} \otimes \bar{Z})=2\langle\bar{X}, \bar{Z}\rangle \bar{Y}-\langle\bar{Y}, \bar{Z}\rangle \bar{X}-\langle\bar{X}, \bar{Y}\rangle \bar{Z}$,

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}}(\bar{Y} \otimes \bar{Z})=\bar{V}_{\bar{X}} \bar{Y} \otimes \bar{Z}+\bar{Y} \otimes \bar{V}_{\bar{X}} \bar{Z}, \tag{10}
\end{equation*}
$$

where $V\left(R^{7}\right)$ is the ring of differentiable vector fields on R^{7}, $\bar{X}, \bar{Y}, \bar{Z} \in V\left(R^{7}\right)$ and $\overline{\bar{V}}$ is the covariant differentiation of R^{7}.
3. 5-dimensional orientable totally geodesic and totally umbilical submanifolds of R^{7}.

Let M be a 5 -dimensional orientable submanifold of R^{7}. Then there exist locally defined mutually orthogonal differentiable unit normal vector fields C_{1}, C_{2} to M.

For any $X, Y \in V(M)$, we can put

$$
\left\{\begin{array}{l}
\bar{\nabla}_{X} C_{1}=-A_{1} X+s(X) C_{2} \tag{11}\\
\bar{\nabla}_{X} C_{2}=-A_{2} X-s(X) C_{1},
\end{array}\right.
$$

where $-A_{1} X\left(\right.$ resp. $\left.-A_{2} X\right)$ is the tangential part of $\bar{\nabla}_{X} C_{1}\left(\right.$ resp. $\left.\bar{V}_{X} C_{2}\right)$ and s is a 1 -form on M.

Then the equation of Weingarten can be taken of the form

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\left\langle A_{1} X, Y\right\rangle C_{1}+\left\langle A_{2} X, Y\right\rangle C_{2}, \tag{12}
\end{equation*}
$$

where $\nabla_{X} Y$ is the tangential part of $\bar{V}_{X} Y$. It is well known that ∇ is the covariant differentiation of M with respect to the induced Riemannian metric and A_{1}, A_{2} are symmetric (1,1) type tensors (e.g. [3]).

We put

$$
\begin{gather*}
\xi=C_{1} \otimes C_{2}, \tag{13}\\
\eta(X)=\left\langle C_{1} \otimes C_{2}, X\right\rangle, \tag{14}\\
\emptyset(X)=X \otimes\left(C_{1} \otimes C_{2}\right) . \tag{15}
\end{gather*}
$$

Then, as we showed in [4], ($\varnothing, \xi, \eta,\langle\rangle$,$) gives an almost contact$ metric structure on M.

Proposition 1. For $\xi=C_{1} \otimes C_{2}$ and any $X, Y \in V(M)$, we have the following identities :

$$
\begin{align*}
& \left(\bar{\nabla}_{X} Y \otimes \xi\right) \otimes \xi=\left\langle\bar{\nabla}_{X} Y, \xi\right\rangle \xi-\bar{\nabla}_{X} Y . \tag{16}\\
N(X, Y)= & \left(Y \otimes \bar{V}_{X} \xi-X \otimes \bar{V}_{Y} \xi\right) \otimes \xi+X \otimes \overline{\bar{V}}_{\varnothing Y} \xi-Y \otimes \bar{\nabla}_{\varnothing X} \xi \\
& +\left(\left\langle X, \nabla_{Y} \xi\right\rangle-\left\langle Y, \nabla_{X} \xi\right\rangle\right) \xi .
\end{align*}
$$

Proof. For (16), we have

$$
\begin{align*}
\left(\bar{\nabla}_{X} Y \otimes \xi\right) \otimes \xi & =\left(\bar{\nabla}_{X} Y \otimes \xi\right) \otimes \xi+\bar{V}_{X} Y \otimes(\xi \otimes \xi) \\
& =2\left\langle\bar{V}_{X} Y, \xi\right\rangle \xi-\langle\xi, \xi\rangle \bar{\nabla}_{X} Y-\left\langle\bar{V}_{X} Y, \xi\right\rangle \xi \tag{9}\\
& =\left\langle\overline{\bar{V}}_{X} Y, \xi\right\rangle \xi-\bar{\nabla}_{X} Y .
\end{align*}
$$

For (17), we have

$$
N(X, Y)=[X, Y]+\varnothing[\varnothing X, Y]+\emptyset[X, \emptyset Y]-[\varnothing X, \emptyset Y]
$$

$$
-\{X \cdot \eta(Y)-Y \cdot \eta(X)\} \xi
$$

$$
=\bar{V}_{X} Y-\bar{V}_{Y} X+\bar{V}_{\varnothing} Y \otimes \xi-\bar{V}_{Y} \emptyset X \otimes \xi+\bar{V}_{X} \emptyset Y \otimes \xi
$$

$$
-\bar{\nabla}_{\varnothing_{Y}} X \otimes \xi-\bar{\nabla}_{\varnothing_{X}} \emptyset Y+\bar{\nabla}_{\varnothing_{Y}} \emptyset X-\{X \cdot \eta(Y)-Y \cdot \eta(X)\} \xi
$$

$$
=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X+\bar{\nabla}_{\varnothing_{X}} Y \otimes \xi-\left(\bar{\nabla}_{Y} X \otimes \xi\right) \otimes \xi-\left(X \otimes \bar{\nabla}_{Y} \xi\right) \otimes \xi
$$

$$
+\left(\bar{\nabla}_{X} Y \otimes \xi\right) \otimes \xi+\left(Y \otimes \overline{\bar{V}}_{X} \xi\right) \otimes \xi-\bar{\nabla}_{\not \subset Y} X \otimes \xi-\bar{\nabla}_{\varnothing_{X}} Y \otimes \xi
$$

$$
-Y \otimes \bar{V}_{\varnothing X} \xi+\overline{\bar{V}}_{\varnothing Y} X \otimes \xi+X \otimes \overline{\bar{V}}_{\varnothing} \xi-\{X \cdot \eta(Y)-Y \cdot \eta(X)\} \xi
$$

$$
\begin{aligned}
& =\bar{V}_{X} Y-\bar{V}_{Y} X-\left(\left\langle\bar{V}_{Y} X, \xi\right\rangle \xi-\bar{V}_{Y} X\right)-\left(X \otimes \bar{V}_{Y} \xi\right) \otimes \xi \\
& +\left(\left\langle\bar{\nabla}_{X} Y, \xi\right\rangle \xi-\bar{\nabla}_{X} Y\right)+\left(Y \otimes \bar{V}_{X} \xi\right) \otimes \xi-Y \otimes \bar{\nabla}_{\varnothing X} \xi \\
& +X \otimes \bar{\nabla}_{\varnothing_{Y}} \xi-\left(\left\langle\nabla_{X} Y, \xi\right\rangle+\left\langle Y, \nabla_{X} \xi\right\rangle-\left\langle\nabla_{Y} X, \xi\right\rangle\right. \\
& \left.-\left\langle X, \nabla_{Y} \xi\right\rangle\right) \xi \quad \text { (by (16)) } \\
& =\left(Y \otimes \bar{V}_{X} \xi-X \otimes \bar{V}_{Y} \xi\right) \otimes \xi+X \otimes \overline{\bar{V}}_{\varnothing Y} \xi-Y \otimes \bar{\nabla}_{\varnothing X} \xi \\
& +\left(\left\langle X, \nabla_{Y} \xi\right\rangle-\left\langle Y, \nabla_{X} \xi\right\rangle\right) \xi . \\
& \text { Q.E.D. }
\end{aligned}
$$

Proposition 2. For $\xi=C_{1} \otimes C_{2}$ and any $X \in V(M)$, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=-A_{1} X \otimes C_{2}+A_{2} X \otimes C_{1} \tag{18}
\end{equation*}
$$

so that consequently
(19) $\quad \nabla_{X} \xi+\left\langle A_{1} X, \xi\right\rangle C_{1}+\left\langle A_{2} X, \xi\right] C_{2}=-A_{1} X \otimes C_{2}+A_{2} X \otimes C_{1}$
holds good.
Proof. For (18), we have by (10) and (11),

$$
\begin{aligned}
\bar{\nabla}_{X} \xi & =\bar{\nabla}_{X}\left(C_{1} \otimes C_{2}\right) \\
& =\bar{\nabla}_{X} C_{1} \otimes C_{2}+C_{1} \otimes \bar{\nabla}_{X} C_{2} \\
& =\left(-A_{1} X+s(X) C_{2}\right) \otimes C_{2}+C_{1} \otimes\left(-A_{2} X-s(X) C_{1}\right) \\
& =-A_{1} X \otimes C_{2}+s(X) C_{2} \otimes C_{2}-C_{1} \otimes A_{2} X-C_{1} \otimes s(X) C_{1} \\
& =-A_{1} X \otimes C_{2}+A_{2} X \otimes C_{1} .
\end{aligned}
$$

And, replacing Y by ξ in (12) we have the left hand side of (19), from which (19) follows immediately.
Q.E.D.

Theorem 1. Let M be a 5-dimensional orientable totally geodesic submanifold of R^{7}. Then the torsion of \varnothing vanishes identically.

Proof. Since M is totally geodesic, we have $A_{1}=A_{2}=0$, which implies $\bar{\nabla}_{x} \xi=0$ by (18) of Proposition 2. Hence we have $N=0$ by (17) of Proposition 1.
Q.E.D.

Proposition 3. For $\xi=C_{1} \otimes C_{2}$, we have the following identities:

$$
\begin{align*}
& C_{1} \otimes \xi=-C_{2} . \tag{20}\\
& C_{2} \otimes \xi=C_{1} . \tag{21}
\end{align*}
$$

Proof. For (20), we have

$$
\begin{aligned}
C_{1} \otimes \xi & =C_{1} \otimes\left(C_{1} \otimes C_{2}\right) \\
& =C_{1} \otimes\left(C_{1} \otimes C_{2}\right)+\left(C_{1} \otimes C_{1}\right) \otimes C_{2} \\
& =2\left\langle C_{1}, C_{2}\right\rangle C_{1}-\left\langle C_{1}, C_{2}\right\rangle C_{1}-\left\langle C_{1}, C_{1}\right\rangle C_{2} \\
& =-C_{2} .
\end{aligned}
$$

Similarly, we have $C_{2} \otimes \xi=C_{1}$.
Q.E.D.

Theorem 2. Let M be a 5-dimensional orientable totally umbilical submanifold of R^{7}. If the torsion of \varnothing vanishes identically, then M is totally geodesic.

Proof. Making an inner product $N(X, Y)$ with ξ, and using (8), we have
(22)

$$
\left\langle X, \bar{\nabla}_{\varnothing_{Y}} \xi \otimes \xi\right\rangle-\left\langle Y, \bar{\nabla}_{\varnothing X} \xi \otimes \xi\right\rangle+\left\langle X, \nabla_{Y} \xi\right\rangle-\left\langle Y, \nabla_{X} \xi\right\rangle=0 .
$$

On the other hand, since M is totally umbilical we have $A_{1}=\lambda_{1} I$ and $A_{2}=\lambda_{2} I$, for some scalars λ_{1} and λ_{2}. Hence, we have by (18),

$$
\bar{\nabla}_{\varnothing Y} \xi=-\lambda_{1} \varnothing Y \otimes C_{2}+\lambda_{2} \varnothing Y \otimes C_{1} .
$$

Thus, we have

$$
\begin{aligned}
& \bar{\nabla}_{\varnothing Y} \xi \otimes \xi=\left(-\lambda_{1} \emptyset Y \otimes C_{2}+\lambda_{2} \emptyset Y \otimes C_{1}\right) \otimes \xi \\
& =-\lambda_{1}\left(\varnothing Y \otimes C_{2}\right) \otimes \xi+\lambda_{2}\left(\varnothing Y \otimes C_{1}\right) \otimes \xi \\
& =-\lambda_{1}\left\{2\langle\emptyset Y, \xi\rangle C_{2}-\left\langle C_{2}, \xi\right\rangle \emptyset Y-\left\langle\emptyset Y, C_{2}\right\rangle \xi-\emptyset Y \otimes\left(C_{2} \otimes \xi\right)\right\} \\
& +\lambda_{2}\left\{2\langle\emptyset Y, \xi\rangle C_{1}-\left\langle C_{1}, \xi\right\rangle \emptyset Y-\left\langle\emptyset Y, C_{1}\right\rangle \xi-\emptyset Y \otimes\left(C_{1} \otimes \xi\right)\right\} \\
& \text { (by (9)) } \\
& =\lambda_{1} \varnothing Y \otimes\left(C_{2} \otimes \xi\right)-\lambda_{2} \varnothing Y \otimes\left(C_{1} \otimes \xi\right) \\
& =\lambda_{1}(Y \otimes \xi) \otimes C_{1}+\lambda_{2}(Y \otimes \xi) \otimes C_{2} \quad \text { (by (15), (20) and (21)) } \\
& =\lambda_{1}\left\{-\langle Y, \xi\rangle C_{1}-Y \otimes\left(\xi \otimes C_{1}\right)\right\}+\lambda_{2}\left\{-\langle Y, \xi\rangle C_{2}-Y \otimes\left(\xi \otimes C_{2}\right)\right\} \\
& \text { (by (9)) } \\
& =-\lambda_{1}\langle Y, \xi\rangle C_{1}-\lambda_{1} Y \otimes C_{2}-\lambda_{2}\langle Y, \xi\rangle C_{2}+\lambda_{2} Y \otimes C_{1} . \\
& \text { (by (20) and (21)) }
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
\left\langle X, \bar{\nabla}_{ø Y} \xi \otimes \xi\right\rangle & \left.=\left\langle X,-\lambda_{1}<Y, \xi\right\rangle C_{1}-\lambda_{1} Y \otimes C_{2}-\lambda_{2}\langle Y, \xi\rangle C_{2}+\lambda_{2} Y \otimes C_{1}\right\rangle \\
& =\left\langle X,-\lambda_{1} Y \otimes C_{2}+\lambda_{2} Y \otimes C_{1}\right\rangle \\
& =\left\langle X, \bar{D}_{Y} \xi\right\rangle \\
& =\left\langle X, \nabla_{Y} \xi\right\rangle .
\end{aligned}
$$

Similarly, we have $\left\langle Y, \bar{\nabla}_{\varnothing_{X}} \xi \otimes \xi\right\rangle=\left\langle Y, \nabla_{X} \xi\right\rangle$.
Therefore, (22) reduces to

$$
\begin{equation*}
\left\langle X, \nabla_{Y} \xi\right\rangle-\left\langle Y, \nabla_{X} \xi\right\rangle=0 \tag{23}
\end{equation*}
$$

But, on the other hand, we have

$$
\begin{aligned}
\left\langle X, \nabla_{Y} \xi\right\rangle+\left\langle Y, \nabla_{X} \xi\right\rangle= & \left\langle X,-\lambda_{1} Y \otimes C_{2}+\lambda_{2} Y \otimes C_{1}\right\rangle \\
& +\left\langle Y,-\lambda_{1} X \otimes C_{2}+\lambda_{2} X \otimes C_{1}\right\rangle \\
= & -\lambda_{1}\left\langle X \otimes Y+Y \otimes X, C_{2}\right\rangle+\lambda_{2}\left\langle X \otimes Y+Y \otimes X, C_{1}\right\rangle \\
= & 0,
\end{aligned}
$$

which, together with (23), implies $\nabla_{X} \xi=0$.
Thus, from (19), we have

$$
\lambda_{1}\langle X, \xi\rangle C_{1}+\lambda_{2}\langle X, \xi\rangle C_{2}=-\lambda_{1} X \otimes C_{2}+\lambda_{2} X \otimes C_{1} .
$$

Applying $\otimes C_{1}$ from the right on both sides of this equation, we have

$$
\begin{aligned}
\lambda_{2}\langle X, \xi\rangle C_{2} \otimes C_{1} & =-\lambda_{1}\left(X \otimes C_{2}\right) \otimes C_{1}+\lambda_{2}\left(X \otimes C_{1}\right) \otimes C_{1} \\
& =\lambda_{2} X \otimes\left(C_{2} \otimes C_{1}\right)-\lambda_{2} X \quad(\text { by }(9))
\end{aligned}
$$

that is,

$$
\begin{equation*}
\lambda_{2}\langle X, \xi\rangle \xi=\lambda_{1} X \otimes \xi+\lambda_{2} X \tag{24}
\end{equation*}
$$

Making an inner product (24) with X, we have

$$
\lambda_{2}\langle X, \xi\rangle^{2}=\lambda_{2}\langle X, X\rangle .
$$

Since $\eta(X)=\langle X, \xi\rangle$, the above equation reduces to

$$
\lambda_{2}\langle\emptyset X, \emptyset X\rangle=0,
$$

by virtue of (5).
Since the rank of \varnothing is 4 and \langle,$\rangle is a Riemannian metric, we can$ conclude $\lambda_{2}=0$.

Similarly, we have $\lambda_{1}=0$, which shows that M is totally geodesic.

> Q.E.D.

References

[1] A. Gray: Some examples of almost Hermitian manifolds. Illinois J. of Math., 10, 353-366 (1966).
[2] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. New York, John Wiley (1963).
[3] M. Kobayashi: On submanifolds in spaces of constant and constant holomorphic curvature. Proc. Japan Acad., 44, 334-339 (1968).
[4] -: 5-dimensional orientable submanifolds of R^{7}. I. Proc. Japan Acad., 45, 582-585 (1969).
[5] S. Sasaki: Almost contact manifolds, Part I. A Lecture Note, Math. Institute, Tohoku Univ. (1965).

