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1o Introduction. In our previous paper [4], we showed that,
using the vector cross product induced by Cayley numbers, any
5-dimensional orientable submanifold M of R admits an almost con-
tact structure.

In this paper, denoting this almost contact structure by (,
we shall study the torsion of . First, we shall prove that if M is
totally geodesic then the torsion of vanishes identically (Theorem 1).
Secondly, we consider the converse problem. Unfortunately, this is
not true in general. But we shall prove that if M is totally umbilical,
then the vanishing of the torsion of implies that M is totally geodesic

(Theorem 2).
2. Basic informations.
(a) Almost contact manifolds.
Let M be a (2n + 1)-dimensional C manifold with an almost con-

tact structure (, , r]). Then we have, by definition,
(I) (#)-- I,
( 2 ) 0()-- O,
( 3 ) 02- --I+ r](.),
where I is the identity transformation field.

By above relations, it can be easily shown that the rank o 0 is 2n.
We denote the associated Riemannian metric of (0, , ]) by

Then it satisfies
(a) -<, .>,
( 5 ) <OX, OY}--(X, Y}--7(X)ri(Y), for any vector fields X, Y on M.

The tensor N(X, Y) defined by
( 6 ) N(X, Y) [X, Y] + O[OX, Y] + O[X, 0Y] [OX, 0Y]

--{X. ri(Y)-- Y. ri(X)}$
is called the torsion of and M is called normal if N vanishes identi-
cally.

(b) The vector cross product on R7.
The vector cross product on R is a linear map P" V(R)X V(R9

-V(R) (writing here P(, )-(R)) satisfing the ollowing condi-
tions"
( 7 ) X(R)Y- Y(R)X,
( 8 ) <X(R) Y, Z>-(X, Y(R)Z},
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(9) (2(R)?)(R)2+X(R)(?(R)2)--2(2,

where V(R) is the ring of differentiable vector fields on R,,,2 e V(R) and is the covariant differentiation of R.. .dimensional orientable totally geodesic and totally umbili.
cal submanifolds of R.

Let M be a 5-dimensiona! orientable submanifold of R. Then
there exist locally defined mutually orthogonal differentiable unit
normal vector fields C, C to M.

For any X, Y e V(M), we can put

gxC,-- --A,X+ s(X)C(11) [xC- AX--s(X)C,
where --AX (resp. AX) is the tangential part of gxC (resp. gxC)
and s is a 1-form on M.

Then the equation of Weingaren can be taken of the form
(12) gxY-xY+<AX, Y)C+(AX, Y)C,
where FxY is the tangential part of gxY. It is well known that
is the covariant differentiation of M with respect to the induced
Riemannian metric and A, A are symmetric (1,1)type tensors (e.g.
[3]).

We put
03)
04) v(X)- (C,@G, X),
(15) (X)

Then, as we showed in [4], (, $, V, ( )) gives an almost contact
metric structure on M.

Proposition 1. For $--C@C and any X, Y e V(M), we have the
following identi$ies

(16)

Proof. For (16), we have
(GY@$)@-

=2(xY, $)$-($, )xY-(xY, $)$ (by (9))

For (17), we have
N(X, Y) [X, Y] +[X, Y] +[X OY] [X, Y]

--{X. v(Y)-- Y.

--X@--Y+,X--{X. v(Y)-- Y. v(X)}
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=Y-x-((.x, )-x)-(x(R))(R)$

+xo-(<y, >+<y, >-<x,
--<X, Vr>)$ (by (16))
(Y@$ x@.)@+x@.4 Y@
+(<X, Vr>--<Y, Vx>). Q.E.D.

Proposition 2. For -C@C and any X e V(M), we have
(18) - AX@C+AX@C,
so that consequently
(19) Vx$+<AX, >C+<AX, $]C---AX@C+AX@C
holds good.

Proof. For (18), we have by (10) and (11),

VxC@C+ C@VxC
=(-AX+s(X)C)@C+ C@(-AX-- s(X)C)

AX@C+s(X)C@C--C@AX--C@s(X)C
AX@C+AX@C.

And, replacing Y by $ in (12) we have the left hand side of (19),
from which (19) follows immediately. Q.E.D.

Theorem 1. Let M be a 5-dimensional orientable totally geodesic
submanifold of R. Then the torsion of 0 vanishes identically.

Proof. Since M is totally geodesic, we have A--A--O, which
implies x$-0 by (18) of Proposition 2. Hence we have N--0 by (17)
of Proposition 1. Q.E.D.

Proposition 3. For -C@C, we have the following identities"
(20) 0@$- -C.
(21) C@$-C.

Proof. For (20), we have

=z(c,
62

Similarly, we have C,-C. .E.D.
Theorem 2. Let M be a 5-dimensional orientable totally umbilical

submanifold of R. If the torsion of vanishes identically, then M is
totally geodesic.

Proof. Making an inner product N(X, Y) with , and using (8),
we have
(22) (X,

On the other hand, since M is totally umbilical we have A-2I
and A-2,I, for some scalars 2, and 2,. Hence, we have by (18),

Thus, we have
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-(R) (-- Y(R)C+ Y(R)C)(R)
(Y@C)@$+(Y@C,)@$

+ {2<OY, )C-<C, )OY--<OY, C)-OY(C)}
(by (9))

oY@(C@$) oY@(C@$)
=2(Y@)@C+2(Y@$)@C (by (15), (20) and (21))
2{- <Y, $>6- Y@($@c)} + 2{-<Y, >c-Y@(@c)}

(by (9))
=-2,<, >6-26-2<Y, >c+2Y@c.

(by (20) and (21))
Hence, we have
<X, Vor@$-<X, --2<Y, $C-2Y@C--2<Y, >C+2Y@C>

<X, Y@C+2Y@C
<Z,
<Z, >.

Similarly, we have <Y, Pox@$>= <Y, Vx$.
Therefore, (22) reduces to

(23) <X, Vr$--<Y, Vx--O.
But, on the other hand, we have

<x, .$+<Y, $-<x, -2Y@c+
+ <Y, 2x@c+
2<X@Y+ Y@X, C>+2<X@Y+ Y@X,

0
which, together with (23), implies Vx$-O.

Thus, from (19), we have
2<z, c+2<x, c--2zc+2zc.

Applying @C from the right on both sides of this equation, we
have

<X, $C@C- -,(X@C)@C+(X@C)@C
2X@(C@C)-2X (by (9))

that is,
(24) a<x, >:a,x(R)$ + ax.

Making an inner product (24) with X, we have
2<x, >=2<x, x>.

Since ](X)-<X, >, the above equation reduces to
<ox, ox>=o,

by virtue of (5).
Since the rank of @ is 4 and < is a Riemannian metric, we can

conclude 2= 0.
Similarly, we have 2-0, which shows that M is totally geodesic.

Q.E.D.
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