145. On the Class Number of an Absolutely Cyclic Number Field of Prime Degree

By Norio Adachi
Department of Mathematics, Tokyo Institute of Technology, Tokyo

(Comm. by Zyoiti Suetuna, m. J. a., Oct. 13, 1969)

Let K be a cyclic extension of odd prime degree p over \boldsymbol{Q}, and suppose that 2 is a primitive root $\bmod p . \quad p$ may be, for example, 3 , $5,11,13,19$ or 29 . We shall prove that the class number h of K is even, if and only if a cyclotomic unit η of K is either totally positive or totally negative, i.e. $|\eta|$ is totally positive. We shall also show that $|\eta|$ is not totally positive, if the discriminant of K is a power of prime. Hence, in such a case, we can conclude that the class number h of K is odd.
§1. On cyclotomic units.
In order to prove our results, we first recollect some properties of cyclotomic units, which are described in [3] with thorough proofs.

Let K be a cyclic extension of odd prime degree p over \boldsymbol{Q}. Then, it is well known that K is cyclotomic, that is, K is contained in $\boldsymbol{Q}_{m}=\boldsymbol{Q}\left(\zeta_{m}\right)$ for some m. Here, and in what follows, ζ_{m} denotes

$$
\cos \frac{2 \pi}{m}+i \sin \frac{2 \pi}{m} .
$$

Let f be the greatest common divisor of m 's such that $\boldsymbol{Q}_{m} \supset K$. Then, K is contained in \boldsymbol{Q}_{f}. Note that a prime number is ramified in K, if and only if it divides f. For any integer a which is prime to f, we define the element $i(\alpha)$ of the Galois group $G\left(\boldsymbol{Q}_{f} / \boldsymbol{Q}\right)$ by

$$
\zeta_{f}^{i(a)}=\zeta_{f}^{a} .
$$

Then the map

$$
a \mapsto i(a)
$$

induces an isomorphism of the multiplicative group $\boldsymbol{Z}_{f}^{\times}$of reduced residue classes $\bmod f$ onto $G\left(\boldsymbol{Q}_{f} / \boldsymbol{Q}\right)$. We will use the same notation $i(a)$ for this isomorphism. In general, we will write a for the class of $a \bmod f$. Denote by $i_{K}(\alpha)$ the element of $G(K / Q)$ which is induced by $i(a)$. Then, the map

$$
a \mapsto i_{K}(a)
$$

induces a homomorphism of $\boldsymbol{Z}_{f}^{\times}$onto $G(\boldsymbol{K} / \boldsymbol{Q})$. We denote by H the kernel of this homomorphism. Since K is real, all elements of K are invariant by $\zeta_{f} \mapsto \zeta_{f}^{-1}$. Hence, -1 is contained in H. We take a subset A of H such that $A \cup\{-a ; a \in A\}=H$, and $A \cap\{-a ; a \in A\}=\varnothing$. Let s
be an element of $\boldsymbol{Z}_{f}^{\times}$such that $S=i_{K}(s)$ generates $G(K / Q)$, and put

$$
\eta=\prod_{a \in A} \frac{\zeta_{2 f}^{a}-\zeta_{2 f}^{-a}}{\zeta_{2 f}^{s a}-\zeta_{2 f}^{-s a}}=\prod_{a \in A} \frac{\sin \frac{a \pi}{f}}{\sin \frac{s a \pi}{f}}
$$

Then, η is a unit of K, which is called a cyclotomic unit of K. We have

$$
\begin{align*}
\eta^{s \nu}=\prod_{a \in A} \frac{\zeta_{2 f}^{s \nu a}-\zeta_{2 f}^{-s^{\nu \nu} a}}{\zeta_{2 f}^{s+1 a}-\zeta_{2 f}^{-s^{\nu+1} a}} & =\prod_{a \in A} \frac{\sin \frac{s^{\nu} a \pi}{f}}{\sin \frac{s^{\nu+1} a \pi}{f}} \tag{1}\\
(\nu & =0,1, \cdots, p-1)
\end{align*}
$$

For $\alpha \in K^{*}$, we define

$$
\sigma(\alpha)= \begin{cases}0, & \text { if } \alpha>0 \\ 1, & \text { if } \alpha<0\end{cases}
$$

When $\xi_{0}, \xi_{1}, \cdots, \xi_{p-1}$ are p units of K, then we define

$$
\Sigma\left(\xi_{0}, \xi_{1}, \cdots, \xi_{p-1}\right)=\Sigma\left(\xi_{\nu}\right) \equiv\left|\sigma\left(\xi_{v}^{s^{\mu}}\right)\right| \quad(\bmod 2)
$$

$$
(\nu, \mu=0,1, \cdots, p-1)
$$

We have $\Sigma\left(\xi_{\nu}\right) \not \equiv 0(\bmod 2)$, if and only if the signatures of $\xi_{0}, \xi_{1}, \cdots, \xi_{p-1}$ are 'independent'.

Let $\varepsilon_{1}, \cdots, \varepsilon_{p-1}$ be fundamental units of K, and $\varepsilon_{0}=-1$. Then, we have

$$
\begin{equation*}
\Sigma\left(-1, \eta^{S}, \cdots, \eta^{s p-1}\right) \equiv h \Sigma \quad(\bmod 2) \tag{2}
\end{equation*}
$$

where $\quad \Sigma=\Sigma\left(\varepsilon_{\nu}\right)$.
§2. Proof.
The theorems to be proved are the following:
Theorem 1. Let K be a cyclic extension of odd prime degree p over \boldsymbol{Q}, and suppose that 2 is a primitive root $\bmod p$, then the class number h of K is even, if and only if $|\eta|$ is totally positive.

Theorem 2. Let K be a cyclic extension of odd prime degree over \boldsymbol{Q}, and suppose that the discriminant of K is a power of prime, then $|\eta|$ is not totally positive.

Remark. Let K be a cyclic extension of odd prime degree p over \boldsymbol{Q}. Then there exists an integral ideal a of \boldsymbol{Q}_{p} such that $h=N a$, where N denotes the absolute norm from \boldsymbol{Q}_{p} (cf. [2]). Hence, for a prime number l, the l order of h is divisible by the order of $l \bmod p$. Thus, 2^{p-1} divides h, if 2 is a primitive root $\bmod p$, and if h is even.

Proof of Theorem 1. Put

$$
\bar{\eta}=\left\{\begin{aligned}
-\eta, & \text { if } N \eta=+1 \\
\eta, & \text { if } N \eta=-1
\end{aligned}\right.
$$

Since the multiplicative group generated by $-1, \bar{\eta}^{S}, \cdots, \bar{\eta}^{s p-1}$ coincides with the multiplicative group generated by $\bar{\eta}, \bar{\eta}^{s}, \cdots, \bar{\eta}^{S^{p-1}}$, we have

$$
\Sigma\left(-1, \eta^{S}, \cdots, \eta^{s p-1}\right) \equiv \Sigma\left(-1, \bar{\eta}^{S}, \cdots, \bar{\eta}^{s p-1}\right) \equiv \Sigma\left(\bar{\eta}, \bar{\eta}^{S}, \cdots, \bar{\eta}^{S^{p-1}}\right)
$$

$(\bmod 2)$.
Hence, from (2), we have

$$
\Sigma\left(\bar{\eta}^{S \nu}\right) \equiv h \Sigma \quad(\bmod 2)
$$

Put $c_{\nu}=\sigma\left(\bar{\eta}^{S \nu}\right)$, then we have

$$
\Sigma\left(\bar{\eta}^{S^{\nu}}\right) \equiv \prod_{i=0}^{p-1}\left(c_{0}+c_{1} \zeta_{p}^{i}+\cdots+c_{p-1} \zeta_{p}^{i(p-1)}\right) \quad(\bmod 2)
$$

As 2 is a primitive root $\bmod p, 2$ inerts in \boldsymbol{Q}_{p}, i.e., the cyclotomic polynomial $X^{p-1}+X^{p-2}+\cdots+X+1$ is irreducible $(\bmod 2)$. Hence, we have

$$
c_{0}+c_{1} \zeta_{p}^{i}+\cdots+c_{p-1} \zeta_{p}^{i(p-1)} \equiv 0 \quad(\bmod 2) \quad \text { for } i \neq 0
$$

if and only if $c_{0}=c_{1}=\cdots=c_{p-1}$. On the other hand, $\sum_{\nu=0}^{p-1} c_{\nu} \equiv 1(\bmod 2)$, since $N \bar{\eta}=-1$. Thus, we see that $|\eta|$ is totally positive, if and only if $\Sigma\left(\bar{\eta}^{S \nu}\right) \equiv 0(\bmod 2)$.

If $|\eta|$ is not totally positive, then we have $h \equiv 1(\bmod 2)$ by (3).
Suppose that $|\eta|$ is totally positive, i.e., $\Sigma\left(\bar{\eta}^{s \nu}\right) \equiv 0(\bmod 2)$. If $\Sigma \equiv 1(\bmod 2)$, then $h \equiv 0$ by (3). If $\Sigma \equiv 0(\bmod 2)$, then the signatures of units are not independent. Then, a result of Armitage and Fröhlich ([1]) tells us that h is even.

Proof of Theorem 2. Note that 2 does not ramify in K, if K is cyclic of odd prime degree. Hence, f is odd. We can assume without loss of generality that s and $a(\in A)$ are odd, and that $0<a<f$. Then, $N \eta=-1$, if (and only if) f is a power of prime (cf. [3], S29). Put

$$
g_{s^{\nu}}=\prod_{a \in A} \sin \frac{s^{\nu} a \pi}{f}, \quad \nu=0,1,2, \cdots, p
$$

Note that $g=g_{s^{o}}$ is positive, and $g_{s p}=-g$, by (1) and by $N \eta=-1$. Hence,
$|\eta|$ is totally positive
$\Longleftrightarrow \quad \eta^{S \nu}=g_{s^{\nu}} / g_{s^{\nu+1}}$ is negative for $\nu=0,1, \cdots, p-1$,
$\Longleftrightarrow g, g_{s 2}, \cdots, g_{s^{p-1}}$ are positive, and $g_{s}, g_{s^{3}}, \cdots, g_{s^{p}}(=-g)$ are negative.
As $i_{K}(s)$ generates $G(K / Q), i_{K}\left(s^{2}\right)$ also generates $G(K / Q)$ and s^{2} must be odd. Suppose that $|\eta|$ is totally positive, and put $t=s^{2}$, then, for another cyclotomic unit $\eta^{\prime}=g / g_{t}$, we have $N \eta^{\prime}=1$, which gives a contradiction.

References

[1] Armitage-Frölich: Classnumbers and unit signatures. Mathematika, 14, 94-98 (1967).
[2] Brumer, A.: On the group of units of an absolutely cyclic number field of prime degree. J. Math. Soc. Japan, 21, 357-358 (1969).
[3] Hasse, H.: Über die Klassenzahl abelscher Zahlkörper, Kapitel II. Berlin (1952).

