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Let K be a cyclic extension of odd prime degree p over , and
suppose that 2 is a primitive root mod p. p may be, for example, 3,
5, ll, 13, 19 or 29. We shall prove that the class number h of K is
even, if and only if a cyclotomic unit of K is either totally positive
or totally negative, i.e. 11 is totally positive. We shall also show that
I]] is not totally positive, if the discriminant of K is a power of prime.
Hence, in such a case, we can conclude that the class number h of K
is odd.

1. On cyclotomic units.
In order to prove our results, we first recollect some properties

of cyclotomic units, which are described in [3] with thorough proofs.
Let K be a cyclic extension of odd prime degree p over . Then,

it is well known that K is cyclotomic, that is, K is contained in
=() or some m. Here, and in what ollows, denotes

cos _2__ / i sin 2z
m m

Let f be the greatest common divisor of m’s such that K. Then,
K is contained in . Note that a prime number is ramified in K, if
and only if it divides f. For any integer a which is prime to f, we
define the element i(a) of the Galois group G(f/) by

(a) __.
Then the map

a i(a)
induces an isomorphism of the multiplicative group Z] of reduced
residue classes mod f onto G(f/O_.). We will use the same notation
i(a) or this isomorphism. In general, we will write a for the class of
a mod f. Denote by i:(a) the element of G(K/.) which is induced by
i(a). Then, the map

a i(a)
induces a homomorphism of Z onto G(K/). We denote by H the
kernel of this homomorphism. Since K is real, all elements of K are
invariant by x71. Hence, --1 is contained in H. We take a subset
AoHsuchthatAJ(-a;aeA)-H, andA(--a;aA}--0. Let s



648 N. ADACHI [Vol. 45,

be an element of Z] such that S-i(s) generates G(K/), and put

sin a

f A sin .sa
f

Then, ] is a unit of K, which is called a cyclotomic unit o K.
have

We

For a e K* we define

When o, , "", $- are p units of K, then we define
X($0, $, ..., $,_) X($)- a($")[ (mod 2).

(v,/=0, 1, ..., p-l)
We have X($)0 (mod 2), if and only if the signatures of
0, , "", $- are ’independent’.

Let e, ..., e_ be fundamental units of K, and 0--1. Then,
we have

X(--1, s, "", -)-hZ (mod 2), (2)
where X-X().

2. Proof.
The theorems to be proved are the following"

Theorem 1. Let K be a cyclic extension of odd prime degree
p over 0, and suppose that 2 is a primitive root mod p, then the class
number h of K is even, if and only if I1 is totally positive.

Theorem 2. Let K be a cyclic extension of odd prime degree
over , and suppose that the discriminant of K is a power of prime,
then I1 is not totally positive.

Remark. Let K be a cyclic extension of odd prime degree p
over . Then there exists an integral ideal a of , such that h-Na,
where N denotes the absolute norm from , (cf. [2]). Hence, for a
prime number l, the order of h is divisible by the order of rood p.
Thus, 2- divides h, if 2 is a primitive root mod p, and if h is even.

Proof of Theorem 1. Put
f--y, ifN-+l,

-I , ifN---1.
Since he muliplicaive group generated by -1, s, ..., s- coincides
with the multiplicative group generated by , s, ..., 7s-, we have

sin sa.s, ._s
]S’- H 2f______-__2f f 1

aA 2f 2f sin
f

(,--0, 1, ..., p--l)
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2:(- 1, ;s, ..., ;s-) =_ 2:(- 1, ]s, ", s-,)-_ 2:(;, ]s, ", s-)
(mod 2).

Hence, from (2), we have
27(s) h27 (mod 2). 3

Put c--a(s), then we have

(S)-- H (Co - CliP - + Cp-Iip(p-l)) (mod 2).
i=O

As 2 is a primitive root mod p, 2 inerts in ,, i.e., the cyclotomic
polynomial X-+X-+... +X+I is irreducible (mod 2). Hence,
we have

Co+C+ +c_(-)=_O (mod 2) or i:/:0,
p-1

if and only if co--c- --c_. On the other hand, c--1 (rood 2),
v=0

since N77----1. Thus, we see that I]1 is totally positive, if and only
if I(s)_-- 0 (rood 2).

If Il is not totally positive, then we have h=_ 1 (rood 2) by (3).
Suppose that I]] is totally positive, i.e., I()--0 (rood 2). If

I_= 1 (mod 2), then h--0 by (3). If I-_-0 (rood 2), then the signatures
of units are not independent. Then, a result of Armitage and
FrShlich ([1]) tells us that h is even.

Proof of Theorem 2. Note that 2 does not ramify in K, if K is
cyclic of odd prime degree. Hence, f is odd. We can assume with-
out loss of generality that s and a(e A) are odd, and that 0af.
Then, N----1, if (and only if) f is a power of prime (cf. [3], $29).
Put

g [[ sin sar 2 p., v--O, 1,
aA f

Note that g-gso is positive, and gsp-----g, by (1) and by N]----1.
Hence,

I]1 is totally positive
s--g/g+l is negative or v-0, 1, ..., p-l,
g, g, ..., gp_l are positive, and gs, gs3, ..., g (=-g) are
negative.

As iK(s) generates G(K/), i:(s2) also generates G(K/) and s must
be odd. Suppose that I]1 is totally positive, and put t--s, then, for
another cyclotomic unit ’--g/gt, we have N’--1, which gives a con-
tradiction.
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