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1. The objective of this paper is concerned with the generaliza-
tion of the classical stability theorem of Poincar-Lyapunov, [1].

The Poincar-Lyapunov theorem with a random parameter can
be written as follows"

2(t; w)-A(w)x(t; w)+f(t, x(t; to)), t_O (1.0)

w e 9,/2 being the supporting set of the probability measure
space (/2, A,/);

(ii) x(t;w) is the unknown nxl random vector;
(iii) A(w) is mxn matrix whose elements are measurable func-

tions;
(iv) f(t, x) is for t e R+ and x e R an nxl vector valued function.
The above random differential system can be easily reduced into

the ollowing stochastic equation

x(t w)--eA()tXo(W)+.I:eA()(t-)f(v, x(v w))dv. (1.1)

Remark. The term e()Xo(W) is referred to as the free stochastic
term or free random variable, e()(-:) the stochastic kernel and
x(0, (o)- x0((o).

The prticular aim of this paper is the existence, uniqueness and
asymptotic behavior of a random solution of the stochastic integral
equation (1.1). In accomplishing this objective we utilized certain
aspects and methods of "admissibility theory" which can be found in
[2].

2. We shall consider that the random solution x(t;w) and the
stochastic tree term eA(tXo(O)) are unctions o the real argument t
with values in the space L(f2, A, tt). The function f(t, x(t; w)), under
convenient conditions, will also be a function of t with values in
L(tg, A,/). The value of the stochastic kernel, e()(t-, 0<_ v <_ t, shall
be an essentially bounded unction with respect to / or every t and
v, such that 0_<v<_t oo. The values of this term or fixed t and v,
will be in L(9, A,/) so that the product of e()tXo(W) and e()(t-)

will always be in L(tg, A,
The norm of the stochastic kernel of the random integral equation

where
()



782 C.P. TSOKO$ [Vol. 45,

(1.1) will be given by

=/ -ess sup
w e 9. That is, or fixed t and v,

][I ea(’)(-’)III =inf { sup
o 9-9o

Z(90)-0.
Definition 2.1. We shall denote by

E,-E(R+, L( A,
the Banach space of all continuous functions from R+ into L(9, A, p),
such that

{.[ [x(t )l dp(w)}’ngAg(t),
where A is a positive number and g(t) is a positive continuous function
on R+.

The norm in the space E is defined by

IIx(t; )11 E.=sup { 1
+ g(t)

where

{ }1/2sup x(t w)Id/2(w)
0Kt

Definition 2.2. The pair of spaces (El, E) will be called admissi-
ble with respect to the operator

T: Eq(R+, L(9, A, ))Eq(R+, L(9, A, )),
if and only if TEE.

Definition 2.. x(t; w) will be called a random solution of the
random integral equation (1.1) if for every fixed t belonging to R+,
x(t; w)e L(9, A, Z) and satisfies equation (1.1) z-a.e.

Definition 2.4. The random solution x(t; ) is said to be
stochastically asymptotically exponentially stable if there exists a

p > 0, such that,

I(t )1() pe-,
where >0.

Pinally, for N and N a air of Banaeh spaces and T a linear
oerator, we state the following lemma which will be used in the main
theorem of this

Lemma 2.1. Let T be a continuous operator from E(R+, L(,
A, )) into itself. If E and E are Banach spaces stronger than E
and the pair (E, E) is admissible with respect to T, then T is a contin-
uous operator from E to E.

The lemma follows easily from the closed graph theorem.
Remark. Since T is a continuous operator it is also bounded.
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Then it follows that we can find a constant K>O, such that

:. With respect to the aim of this paper we state and prove the
following theorem.

Theorem :.1. Let us assume that the random integral equation
(1.1) satisfies the following conditions:

( i ) The matrix A(w) is stochastically stable, that is, there exists
0, such that

(w; Re()--, k=l, 2, ..., n}=l,
where (w), k= 1, 2,..., n, are the characteristic roots of the matrix;

(ii) x(t w)f(t, x(t; w)) is an operator on
S={x(t ) x(t ) e E,

with values in Eq satisfying
]]f(t, x(t w))-- f(t, y(t ))[l2[[x(t

for x(t w), y(t w)e S, 2 being a constant and f(t, 0)=0.
Then, there exists a unique random solution of the random inte-

gral equation (1.1), such that

lim Ix(t; )1d(m) -0,

provided that
K-, le()tXo(W)l[p(1-K)

where K is the norm of the operator T.
Proof. First we will show that the pair of Banach spaces (Eq,

Sq) with g(t)=e-, where 0fl, is admissible under the above
conditions. Recall that the norm in Eq space is defined by

(t; )= su 1 (t; )d()

and for (t; ) e No let us define he following integral operator

It follows that

(3.1)

It has been shown by T. Morozan [3] that there exists a subset 90 of
9, such that, p(90)= 1 and

e () (t-) g Me-"(t-), (3.2)
for w e 90, K>0 and a as defined above. Applying inequality (3.2) to
inequality (3.1) we have

]](Tx)(t )1M e-"(t-) x(v o) g(v)dv. (3.3)
g(r)

Since we have chosen g(t)=e-, Oa, inequality (3.3) can be writ-
ten as



784 C.P. TsoIos [Vol. 45,

II(Tx)(t oo)l] <M e-"te("-) IIx(t w)ll dv
e-

<_MIIx(t; w)[(a-)-[e-t-e-t], tKO. (3.4)
Since 0fl a, inequality (3.4) can be majorized as ollows’

][(Tx)(t w)[J KMJ]x(t w)]J(a-- fl)-e
rom which it ollows that

(Tx)(t w)lM(a-- fl)- Ix(t
gK[x(t; ).

Hence, x(t; ) e Eq implies that TEqEq, which implies that the pair
of Banach spaces (Eq, Eq) is admissible.

Now, let us define an operator U from S into Eq as follows"

(Ux)(t w)-e() Xo(W)+ [.e()t-)f(v, x(v w))dv. (3.5)

We must show that U is a contracting operator and USS. Consider
an element y(t; )e S. We can write

(Uy)(t; w)- ea()tXo(W) +.[toea(*)(t-*)f(v, y(v w))dv. (3.6)

Subtracting equation (3.6) from equation (3.5) we have

(u)(t; ,)-(uv)(t; ,)-o,,,,-,f(, x(:; ))-f(:, v(:; ))d.

Since USEq is a Banach space, then
(Ux)(t w)-(Uy)(t ) e Eq.

By assumption (ii), [f(t, x(t; w))--f(t, y(t; w))] e Eq. From Lemma
2.1 we have seen that T is a continuous operator from the Banach
space Eq into Eq, which implies that we can find a constant K>0,
such that,

ll(Tx)(t w)liKllx(t
That is,

II(Ux)(t w)-(Uy)(t w)llKlf(t, x(t w))- f(t, y(t w))l.
Now, applying Lipschitz’s condition given in (ii) we have

[l(Ux)(t; w)--(Uy)(t; w)tig2Klix(t; w)--y(t;
Applying the condition that 2K< 1, it implies that the operator U is a
contracting operator. It now remains to be shown that USc S. For
every x(t ) e S, we have

(Ux)(t; )--eA(*)tXo()+.[:ea(o)(t-*)f(v, x(v; w))dv. (3.7)

It follows that

Ite(o)’x0(o)li + ’ol,le’*"-*’ili ttf(r, x(r .))itd (S.S)II(Yx)(t;

but, i]lea(*)(t-*)l]gMe-"(-), which implies that inequality (3.8) can be
written as
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+M e-"(-) llf(r, x(v w))ll g(v)dv. (3.9)
g(r)

Since g(t)=e-, (3.9) becomes
II(Vx)(t o)11<_

+Mf(t, x(t, w))I oe-"(-)g(v)dv

ge()tXo(W)+M(a--fl)- ]f(t, x(t; )]. (3.10)
By adding and subtracting f(t, 0) and applying Lipschitz’s condition
inequality (3.10) becomes

](Ux)(t; w)[e"()tXo(W)+K2x(t;w). (3.11)
Since x(t;w)e S and x(t;w)]p together with the condition that
]]e()tXo(W)]]p(1--2K), equation (3.11) reduces to

](Ux)(t; w)] p(1--2K) +K2p=p,
which implies that (Ux)(t; w) eS or all x(t; w) eS, or USES.
Therefore, since U is a contracting operator and USeS (Inclusion
property), applying Banach’s Fixed Point Theorem, there exists a
unique random solution of the random differential system (1.0) which
is exponentially stochastically stable.
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