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1. The objective of this paper is concerned with the generaliza-
tion of the classical stability theorem of Poincaré-Lyapunov, [1].
The Poincaré-Lyapunov theorem with a random parameter can
be written as follows:
&(t; w)=A(@a(t; )+ f(¢, 2(t; 0), t>0 (1.0)
where
(i) weQ, 2being the supporting set of the probability measure
space (2, A, 1)
(ii) 2(t; w) is the unknown nzl random vector ;
(iii) A(w) is man matrix whose elements are measurable func-
tions;
(iv) f(t, x) is for te R, and x ¢ R an nxl vector valued function.
The above random differential system can be easily reduced into
the following stochastic equation

x(t; w):e‘“‘"”xo(w)+jte‘““‘)“")f(f, x(7; w)drz. 1.1)
0

Remark. The term e4“tx(w) is referred to as the free stochastic
term or free random variable, e4““-" the stochastic kernel and
200, w) =z (w).

The particular aim of this paper is the existence, uniqueness and
asymptotic behavior of a random solution of the stochastic integral
equation (1.1). In accomplishing this objective we utilized certain
aspects and methods of ‘‘admissibility theory” which can be found in
[2].

2. We shall consider that the random solution x(¢; @) and the
stochastic free term e4@tx(w) are functions of the real argument ¢
with values in the space L2, 4, ). The function f(¢, #(f; w)), under
convenient conditions, will also be a function of ¢ with values in
L2, A, 1r). The value of the stochastic kernel, e4® %2, 0<7<{, shall
be an essentially bounded function with respect to g for every ¢ and
7, such that 0<7<t<co. The values of this term for fixed ¢ and 7,
will be in L.(2, A, 1) so that the product of e4“‘w,(w) and e*« ="
will always be in L,(@, A, p).

The norm of the stochastic kernel of the random integral equation
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(1.1) will be given by
IIIeA(ar)(t—-t)”I — “eA(a:)(t—f-)” Lm(Q’ A’ ”)
=y —ess sup [ed@=o|
w e . That is, for fixed ¢ and <,
”IeA(w)(t—t)”l ___inf {sup IeA(w)(t-—r) ‘},
2o 2-920

#(Q 0 =0.
Definition 2.1. We shall denote by
EozEg(R-n Lz(Qa A, ﬂ))
the Banach space of all continuous functions from R, into L2, A, p),
such that

1/2
{[ 12t o)f dut@} <400,
where A is a positive number and g(t) is a positive continuous function
onR,.
The norm in the space E, is defined by

lott; 0| By=gup |_tlatt;

where
|2t ; @)||=||2t; @)||Lo0,4m

—sup Un |2(t; @) |2d,,¢(w)} ”,

Definition 2.2. The pair of spaces (F,, E,) will be called admissi-

ble with respect to the operator
T:E,R,, L2, A, )—E/(R,, L(2, A, 1)),
if and only if TE,CE,.

Definition 2.3. x(t; ®) will be called a random solution of the
random integral equation (1.1) if for every fixed t belonging to R,,
x(t; w) e LR, A, 1) and satisfies equation (1.1) p—a.e.

Definition 2.4. The random solution «(¢; w) is said to be
stochastically asymptotically exponentially stable if there exists a
©0>0, such that,

UDI 2(t; o) lzdﬂ(w)} m <pe™*,
where 3>0.

Finally, for E, and E, a pair of Banach spaces and T a linear
operator, we state the following lemma which will be used in the main
theorem of this paper.

Lemma 2.1. Let T be a continuous operator from E (R,, L2,
A, p)) into itself. If E, and E, are Banach spaces stronger than E,
and the pair (E,, E,) is admissible with respect to T, then T is a contin-
uous operator from E, to E,.

The lemma follows easily from the closed graph theorem.

Remark. Since T is a continuous operator it is also bounded.
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Then it follows that we can find a constant K >0, such that
1(T) t; @), <K|2(t; @),
3. With respect to the aim of this paper we state and prove the
following theorem.
Theorem 3.1. Let us assume that the random integral equation
(1.1) satisfies the following conditions :
(i) The matrix A(w) is stochastically stable, that is, there exists
a>0, such that
ﬂ{w > Re "P‘k(w)< —«, k=1’ 2’ ] n}:]-’
where ¥ (w), k=1,2, - - -, n, are the characteristic roots of the matrix;
(1) x(t; w)—f(t, 2(t; w)) is an operator on
S={x(t; w); 2(t; w) e E,, [|[2(t; ®)llzy<,}>
with values in E, satisfying
IIf(t x(t; 0)—f&yl; o)|e, <Al 2(E; w)llEg
for x(t; w), y(t; w) e S, A being a constant and f(t,0)=
Then, there exists a unique random solution of the random inte-
gral equation (1.1), such that

lim UD |2 ; @) Fd,u(a))} "o,
t—o0
provided that
A<K7, |e4“z(w)|z, < p(1—AK)
where K is the norm of the operator 7.
Proof. First we will show that the pair of Banach spaces (F,,

E,)) with g(t)=e*, where 0<f<a, is admissible under the above
conditions. Recall that the norm in E, space is defined by

) 1/2
ot @)lls, = sup T@” |a(t; )Fdp@)]

and for z(t; w) € E, let us define the following integral operator
(T)(t; w):j‘emw-vx(r; w)dz.
0
It follows that

1(T2)E; o) gfemw-ﬂux(f ; w)||dr. 3.1
0
It has been shown by T. Morozan [3] that there exists a subset 2, of
2, such that, p#(2,)=1 and
I”eA(aJ)(t—f)”lSMe—a(t-r)’ (3.2)

for w € 2,, K>0 and « as defined above. Applying inequality (3.2) to
inequality (8.1) we have

I(Tat; i <M -““-”J'—“’(%)ﬂ)lg(r)dr 3.3)

Since we have chosen g(t)=e*, 0< < a, inequality (3.3) can be writ-
ten as
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I(T2)(t; w)||_<_Mf e otera=P _____Hx(t_ﬁw)” dr
0 T

<Mjx(t; w) “Ege_”j @D dr
0

<M||2(t; 0)||z(a—p) e —e], t<0. (8.4
Since 0< < a, inequality (3.4) can be majorized as follows:
[(T2)(t; w)| <M||2(t; @)|z,(a—p) e
from which it follows that
I(T2)(E; @) |5, < Mla—B) 25 )|z,
<K|x(t; )|z,
Hence, z(t; w) ¢ E, implies that TE,C E,, which implies that the pair
of Banach spaces (E,, E,) is admissible.
Now, let us define an operator U from S into E, as follows:

(UD)(E; 0) =4 (@) + j ‘10 £(z, 2(z ; w))dr. (3.5)

We must show that U is a contracting operator and USCS. Consider
an element y¥(t; w) e S. We can write

Uy)(t; w)=e4<w>txo(w)+j’eA<w><t-f> f(z, ¥(z; w)dr. (3.6)
Subtracting equation (8.6) from equation (3.5) we have
U)(t; 0)—Uy)(t; w)=ﬂe‘“‘")“"’[f(r, x(t; »)— f(z, y(r; w)ldz.

Since USCE|, is a Banach space, then

U)(t; 0)—Uy(t; w) e E,.
By assumption (i), [f(¢, #(t; w))—f(E, y(t; w)le E,. From Lemma
2.1 we have seen that T is a continuous operator from the Banach
space E, into E,, which implies that we can find a constant K >0,
such that,

1(T2)(t; o)z, <K|2(t; @)z,
That is,

Ut @) —(UW)(E; )5, <K alt; 0)—F(E, Y5 @)llz,:
Now, applying Lipschitz’s condition given in (ii) we have
IUx)(t; @) —(Uy(E; )|z, <AK|2(; @) —Y(E; 0|z,

Applying the condition that AK <1, it implies that the operator U isa
contracting operator. It now remains to be shown that USCS. For
every x(t; ) € S, we have

(Uz) (t; ) =A@tz (w) + j‘emw—ﬂ F(z, oz ; ®))dr. 3.7
It follows that
|Wa)(E; @)z, < e m(@)| + [ Jlle || | £z, ae; 0D lde (3.8)

but, |||e4®“-?|||<Me =“-?, which implies that inequality (3.8) can be
written as
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(Un)(t; 0)||z, < |le* w(w)]]
+Mj e-st=0 1 ez a(z; )| g(@de.  (3.9)
0 9(7)

Since g(t)=e#, (3.9) becomes
[(U2)(E; o)z, < e mw) ]|

+ M £t att, )]s, | e ¢-g()de

<ot (@) + M1, w(t; @)z, [ e de

< et afw)|| +M(a— B f(&, at; @) g,  (3.10)
By adding and subtracting f(¢, 0) and applying Lipschitz’s condition
inequality (3.10) becomes

[(U2)(E; @) ||z, < |le* (@) || + K| 2(t ; @) g, (8.11)
Since 2(t; ) € S and ||2(t; w)||z,< p together with the condition that
et z(w)|| < p(1—2K), equation (3.11) reduces to

|(Ux)(t; )| <p(l—AK)+Kip=p,

which implies that (Ux)(t; w)eS for all z(t;w)eS, or USCS.
Therefore, since U is a contracting operator and UScS (Inclusion
property), applying Banach’s Fixed Point Theorem, there exists a
unique random solution of the random differential system (1.0) which
is exponentially stochastically stable.
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