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32. L*.theory of Pseudo-differential Operators

By Hitoshi KUMANO-GO* and Michihiro NAGASE*®
(Comm. by Kinjiré KUNUGI, M. J. A., Feb. 12, 1970)

Introduction. The L*-theory of pseudo-differential operators has
been studied in many papers, but we know very few papers which are
concerned with L?-theory. We say g(x, §) e 87, 0<p<1, 0<0, when
g(x, &) e C=(R3 X R?) and for any a, B3, there exists a constant C, , such
that

|0208g(x, §)| < C, L& pmroleai-eltl
where a=(ay, - - -, ), B=(By, - - -, B,) are multi-indices whose elements
are non-negative integers, (§)>=Q1+ |£P?, and 0,,=0/0x,, 0,,=0/0&,
j:l, RPN (2
05=0z- -0, 01=0%---0fn, |a|=a,+ - +ay,

|Bl=pB1+ -+ B, For a pseudo-differential operator defined by the
symbol of class S7,, the L’*-boundedness of the form |g(X, D,)ul,
<C||%||lnss Was proved by Hormander [2] and Kumano-go [4] in the
case 0=<0<p<l.

In the present paper we shall study the general L?-theory for
pseudo-differential operators of class S7; in the case: 0<0<1 and
1<p<co. Recently for operators of class S{,, Kagan [3] proved the
Lr-boundedness: ||p(X, D)u|.» ZC|u|» for 1<p<2. Applying the
theory in Kumano-go [5], we first prove the inequality ||g(X, D )ull,,,
=< C||%llp,m+s for any real s and 1<p<oco (which solves a problem of
Hoérmander in [2], p. 163, for the typical case p=1), and prove the
theorems: the generalized Poincaré inequality, the invariance of the
space H, , under coordinate transformation and the a priori estimate
for elliptic operators.

1. Definitions and fundamental lemmas.

We shall use the following notations:

S={u(x) € C~(R") ;|l|im |z|™|0%u(z) | =0 for any m and a}.

&’ denotes the dual space of S. For u e S, we define the Fourier trans-

form of u by 'ﬁ(E):Ie‘w"u(x)dx, z-E=wxé&,+.. +2,£,. Forany real

s we define an operator (D,>*: S—& by
(Dyulw)=@m) o= gy ae)dé.
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We define the norm |ju||, , by

[tllo={[1<D>uta) e} .

The operator {D,>*: S—& can be uniquely extended to the operator
(Dpy': §—8 by
LD yu, vy=<{u,{D vy for ueS,vedS.

Definition 1.1. For 1<p<oco and —oo<s<oco we define the
Sobolev space H,, by H, ,={uecS;<{D,y'uel(R)}={uecS;u
={D >"*u, for some u, € L*(R")}.

By the definition we can easily see that H,, is a Banach space
provided with the norm |u||,,, and S is dense in H, .

Definition 1.2. For g(x, §) € S7; we define an operator g(X,D,)

by 9(X, Du(x)=(2x)" j etwtg(x, EYUE)E for ue S.

It is clear that g(X,D,): S—S is linear. In what follows we
assume that 0<0<1 and 1<p<oco. For g(x,§) e ST, we use a nota-
tion |g|,= |9, defined by

lglz,m'—‘ 1%?{}5{; Su}) {la;agg(x’ E)[<$>‘<m+5|“"'ﬁ')}<oo.

)

Lemma 1.1 (Kagan [3]). Assume that 1<p=<2. For any g(x, &)
€ 89, there exists a constant C such that

L. 19X, DUl <Cllull,, for ues,
where C depends only on p and |g|,, for sufficiently large .

Lemma 1.2 (Kumano-go [5]). i) For two symbols g,(z, &) e S7y,

j=1, 2, there exists a symbol g(x,&)e Sry*™ of the form g(x,§)
=9.(®, )9, §)+ 9'(x, &) where g'(x, §) e Sry*m==» such that 9(X, D,)
=p1(X, Dx)pz(X’ Dw)'
ii) For a symbol g(x,§) € ST, there exists a symbol g*(x, &) e SP, of
the form g*(x,8)=g(x,&)+9'(x, &) where g'(x, &) € ST7~? such that
(9 X, DYyu, v)=(u, g*(X, D,)v) for any wu,veS, where we used the
notation

(u, v)= |u(@)v(@)dx for any u,vedS.

Theorem 1.1. For g(x, &) € ST, and real s, there exists a constant
C=C(m, |9|;,m, ) such that
1.2 19(X, D)u|lp s <C||%l|lp,mss for ueS.

Remark. Set s,=n(1l/p—1/q) for 1<p=<g<oco. By the Hardy-
Littlewood-Sobolev estimates of potentials we have [|[v|l, s, <C, o||? |0
veS, with a constant C,, Then, by Theorem 1.1, we get
l9(X, D)ully, s <C||%]lp.00 €S, for g(x,&)eS),. This means that
Hoérmander’s problem in [2], p. 163, holds for p=1.

Proof 1°. The case m=0 and s=0. In this case in view of
Lemma 1.1, we may assume that p>2. Let p'=p/(p—1), then 1<p’
<2. By ii) of Lemma 1.2 there is a symbol g*(z,§) € S}, such that
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(9 X, D)u, v)=(u, 9*(X,D,)v). Then, by Lemma 1.1 and Holder’s
inequality we have
[(9(X, Du, v)| = |(u, g*(X, D;)v) |
< [[tellp0 9%, D)0llpr, o= Clltllp o 119 o
Therefore by the duality theorem we get g(X, D,)u ¢ L? and
19X, Dot e S Clltely,o-

2°, The general case. Since (§)*e Si,, by i) of Lemma 1.2 there
is a symbol g,(z, &) € SP;* such that g,(X, D,)=<{D,»'9(X,D,). There-
fore we have

”g(X, Dw)u“p,s= ”gs(X, Dm)u”p,o
=11(94(X, DYDY~ ™+ YD >™ U)o
Since p,(x, £)<E>~ ™+ € 87, by 1° we obtain (1.2). Q.E.D.

2. The properties of the space H, , and Poincaré’s lemma.

Proposition 2.1. If 8,=s,, then H, ,CH, ,, and
@21 ully,=C(sy, 8, D) |ullps, for weH,,  (c.f.[1], p. 120).

Proof. Noting (§>~®-2 ¢ 8}, by Theorem 1.1 we have

1llp,50= <D s> ullp0= [KDad™ @~ (D> ) 0
§C||<Dm>xlu“p,0:C“u”p,sl for ued.
Since S is dence in H, ,,, this means (2.1). Q.E.D.

Theorem 2.1 (Poincaré’s lemma). For any 1<p<oco and any
real $>0 there exists a constant C such that
2.2) el o< Clt el for weCy(lz|<d)
where C depends only on p and s and is independent of d>0.

Proof. We may only prove the theorem for 0<d<1, since (2.2)
is clear for d=1 by means of (2.1). Let ¥(£) e C3(R™ such that (&)
=1 for |£]<1/2 and (§)=0 for |&|21, and let ¥ (&) ="(deE)
where ¢ is a sufficiently small positive number to be fixed later. We
define (%), u(x) by @(E)=1v,4.)AE) and 4,(5)={1—,.(5)}UE),
respectively.  Then we have w(x)=wu,(2)+u,(x). Set 9(§)=g,.%)
=d~*(EY 7 {(1—4,(8)}. Then,

0:9(&)

=7 3 Cowdf<®) (L) e (Le) +am o) (- ).
a’’x0
Since d{§>=¢/2 on the support of {1—v,,(§)}, and ¢2<d<5><C, on
the support of 4" (de'£) where C, is independent of 0<d<1, we
have |0¢9(§)| <C, <&)>~'*. Hence by Theorem 1.1 we have
[%a]lp,0= 2 |9(D)XD2>*u|lp,0
édsox,c“<Dx>su”p,o=dsCl,.“u“p,s
where C, , is independent of d. We can write

(@)= [ —arudy=| (g) (& w—a)uwady.

We can see easily that |§(2)| £C, and ||[V4,, ||z:=||¥|/z.=C; where C, and
C, are independent of d and ¢. Therefore,
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w@Ps ([ 1dale—wid) [ 1haa—w! (uapray)

£Co 037 e [ 40, @—0)| [u@)lPdy.
Hence ||u, |5 ,<C, ,C8?'Cse"?/?"||u|5 ,, and taking ¢ >0 sufficiently small,
we get ||u1]|p,o§§]|unp,o. Then, we have

1
l[%lp,0 = ll%:1 15,0+ Iluzllp,oé—z-llullp,o+ Cid*||ullp,0

and get (2.2) for C=2C,. Q.E.D.

Corollary. Let 8>s>0 and d>0. Then there exists a constant
C=C(,s,p,n), which is independent of d>0, such that
2.3) [lly s SCA el for weC(|z|<d).

Next we consider a C~-coordinate transformation z(y): R};—R=
such that
(2~4) aijk(y) € Q‘y’ j, k=1’ RN (N C_lé |det(ay90(’!/)) I éC
for a constant C >0 where 0,2(y)=(9,,%+(%)) is the Jacobian matrix and
det(d,x(y)) denotes its determinant. For u e S we put w(y)=u(x(y)).

Lemma 2.1 (Kumano-go [5]). For {§>™ e Sz, there exists a symbol
h(y, n) € ST,y such that h(Y, D )w(y)= Dy u)(@(y)).

Theorem 2.2. The space H, , is invariant under the coordinate
transformation satisfying (2.4) in the sense: u(x)e H, , , if and only
if wy)=uw(x®)eH,,, More precisely there exist symbols h(y,n)
e S; and g(x, §) € Sif such that w(y)=h(Y, D )wy(y) for wy(y)=u(x(y))
if u={Dyy"*u, for u, € L? and w(x)=9g(X, D Jux) for u()=wy(®) if
w=<{D,>"*w, for w,e L.

Remark. Theorem 2.2 was shown by Lions-Magenes [6] for the
more general case, but here we give another proof which is simple and
concrete.

Proof. We may only prove the inequality :

CHUllp,s,a = N1WIlp,s,y S Clltlp,s0 TOr u(®@) € Spy W) =u(@(®)) € S,
By Lemma 2.1 there is a symbol k(y, n) € Si3 , such that w(y) =wu(x(y))
=Dy u)@@)=hY,D)wy) where wy(y)=ux(y)). Therefore,
by Theorem 1.1,

W@ lp,s,5= 1Y, D)W1) |lp,s,5 = Cil Wollp,0,
éCznuonp,o,x:Czllu”p,s,m'
By the same way we have |[u), ., Clw||,, - Q.E.D.

3. The a priori estimate for elliptic operators.

Lemma 3.1 (Kumano-go [5]). Let g(x,§)eSt,. Then, for any
real s there exists a constant C, such that
(3'1) ”g(X, Dx)u“z,sé I g|o,m”u’”2,m+s+ Cs“'“”z,mw-—(l—ﬂ)/ﬁ‘

Lemma 3.2. For g(x,§) e ST, there exist constants C{ and CP
such that 1i1£1 CP=gln and

»
(32) ”g(X, D.z)u“p,sgcg) ”u”p m+s+ Cg) ”u”p,mw—(l-b)'



142 H. KuMANO0-GO and M. NAGASE [Vol. 46,

Proof. Let ¥(&) e C* such that ¥(§)=0 for |&| <1, ¥(§)=1 for
&1 =2 and 0< ()1, and set v (§)=v(§/k), k=1,2, ... Then, by
Lemma 8.1 and Plancherel’s formula we have
“g(X’ Dx)‘pk(D.z)u”Z,s
={19lo,n+C; Sgp( [e(E) 1 ED™ P % |lg, mv -

Therefore for any ¢ >0 there exists k, such that

llg(X, Dx)‘!’k,(Dw)unz,sé (lg |o,m +e) ”u||2,m+s'
Then, by Theorem 1.1 and the interpolation theorem of Riesz-Thorin
(see [T]), we get ||g(X, Dm)‘l"lc(Dz)u“p,sécp”ullp,mw’ where lj}{g Cp= |9 lo,m

+¢&. Using the fact g(x, §)A—y(£)) e S™=(=NS:,) and taking a
¢
sequence &, >¢,> .- -—0, we get (3.2). Q.E.D.

Theorem 3.1. Let g(x, §) € ST, satisfy |g(x,&)| =C(&E)™. Then
there exist constants C,, C, and C3, CP such that

(3~3) ”u”p,mﬂgcp”g(Xy Dac)u “p,s + C;z“u“p,mﬂ—-(l—ﬁ)’
(34) ”u’”p,m_nécg) ”g(X’ Da:)u”p,s+ Cg) ”u”p,m+s-(1—6>’

where C,, C, are bounded when p is on any compact set of (1, o) and
linr; CY=Cq.
o
Proof. Setting g_,(x,§)=9(x, &) ( € S;}) we write
1y, m s s S 119X, D){Dzp™**g(X, D)u|p0
+ 191X, DI9(X, D){D ™+ —{D>™**g(X, D)}kl
+ ”{l_g—l(X’ Dz)g(X9 Dz)}<Dz>m+su”p,0'
Then, using i) of Lemma 1.2 and Theorem 1.1 we can show that the
second and third terms do not exceed C%||%|lp m+s—a-»- As for the first
term, by the assumption of g(x,§) we get g_,(x,5)KED™ e S, and
su? {1912, )| (E>™(E>5}<Cy*.  Therefore if we apply Theorem 1.1

to g_(X, D)XD,>"**, we have

”g—l(X’ Dx)<Da:>m+sg(X’ Dz)u”p,oé CpHg(X, Dx)u”p,s'
Hence we get (3.3). By Lemma 3.2 and Theorem 1.1 we get (3.4) for
CY such that lim CP=C5". Q.E.D.
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