29. Note on Covariance Operators of Probability Measures on a Hilbert Space

By D. KANNAN and A. T. BHARUCHA-REID*) Center for Research in Probability Wayne State University, Detroit, Michigan

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1970)

1. Introduction. Let $(\Omega, \mathcal{A}, \mu)$ be a probability measure space, and let $(\mathfrak{H}, \mathfrak{B})$ denote a measurable space where \mathfrak{H} is a real separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$, and \mathcal{B} is the σ -algebra of Borel subsets of \mathfrak{H} . Let $x(\omega)$ denote a \mathfrak{H} -valued random variable, that is $\{\omega : x(\omega) \in B\} \in \mathcal{A}$ for all $B \in \mathcal{B}$; and let ν_x denote the probability measure (or distribution) on \mathfrak{H} induced by μ and x, that is $\nu_x = \mu \circ x^{-1}$, or $\nu_x(B) = \mu(x^{-1}(B))$ for all $B \in \mathcal{B}$. Let $\mathfrak{M}(\mathfrak{H})$ denote the space of all probability measures on \mathfrak{H} ; and let $\nu \in \mathfrak{M}(\mathfrak{H})$ be such that $\varepsilon_{\nu}\{||x||^2\}$ $=\int ||x||^2 d\nu < \infty$. Then the covariance operator S of ν is defined by the equation

$$\langle Sg,g \rangle = \int_{\mathfrak{H}} \langle f,g \rangle^2 d\nu(f)$$
 (1)

(cf. Grenander [1], Parthasarathy [4], Prokhorov [5]). A linear operator L in \mathfrak{H} is said to be an S-operator if it is a positive, selfadjoint operator with finite-trace; hence L is compact. S-operators play a fundamental role in the study of probability theory in Hilbert spaces (cf. [2, 3, 6, 10]). We recall that the function

$$\hat{\nu}(g) = \exp\{-1/2 \langle Sg, g \rangle\}, \ g \in \mathfrak{H},$$
(2)

is the *characteristic functional* (or Fourier transform) of a probability measure on \mathfrak{H} iff S is an S-operator. Also, if ν is the measure corresponding to $\hat{\nu}$, then $\varepsilon_{\nu}\{\|x\|^2\} < \infty$; and S is the covariance operator of ν . We also recall that a measure ν on \mathfrak{H} is normal (or Gaussian) iff $\hat{\nu}$ is of the form

$$\hat{\nu}(g) = \exp\{i\langle g_0, g \rangle - 1/2\langle Sg, g \rangle\},\tag{3}$$

where g_0 is a fixed element in \mathfrak{H} and S is an S-operator. The element g_0 is the expectation of ν , and S its covariance operator.

Let $L_2(\Omega, \mathcal{A}, \mu, \mathfrak{H}) = L_2(\Omega, \mathfrak{H})$ denote the space of \mathfrak{H} -valued random variables $x(\omega)$ such that $\varepsilon_{\mu}\{\|x\|^2\} < \infty$, with norm defined by (4)

$$[c]_2 = (\varepsilon_{\mu} \{ \|x\|^2 \})^{1/2}.$$

For any finite sequences $\{\xi_i\} \subset L_2(\Omega, \mathcal{A}, \mu) = L_2(\Omega)$ and $\{f_i\} \subset \mathfrak{H}$, put

$$\sum_{i=1}^{n} \xi_{i}(\omega) \odot f_{i} = \sum_{i=1}^{n} \xi_{i}(\omega) f_{i}(\text{mod } \mu).$$
(5)

^{*)} Research supported by National Science Foundation Grant No. GP-13741,

The above relation defines an element of $L_2(\Omega, \mathfrak{H})$. Let $L_2(\Omega) \odot \mathfrak{H}$ denote the algebraic tensor product of the Hilbert spaces $L_2(\Omega)$ and \mathfrak{H} ; that is $L_2(\Omega) \odot \mathfrak{H}$ is the set of all functions defined by (5); and it is also a dense linear subspace of $L_2(\Omega, \mathfrak{H})$ with norm $[\cdot]_2$. This norm is a crossnorm (cf. Schattan [7], p. 28), that is, $[\mathfrak{F} \odot f]_2 = \|\mathfrak{F}\|_2 \cdot \|f\|, \mathfrak{F} \in L_2(\Omega),$ $f \in \mathfrak{H}$. Let $L_2(\Omega) \widehat{\otimes} \mathfrak{H}$ denote the tensor product Hilbert space which is the completion of $L_2(\Omega) \odot \mathfrak{H}$ with respect to the norm defined by (4); that is $L_2(\Omega, \mathfrak{H}) = L_2(\Omega) \widehat{\otimes} \mathfrak{H}$. Since $\nu_x = \mu \circ x^{-1}$, it is clear that those elements $x \in L_2(\Omega) \widehat{\otimes} \mathfrak{H}$ generate measures $\nu_x \in \mathfrak{M}(\mathfrak{H})$ for which covariance operators are defined. In the present note we use two theorems of Umegaki and Bharucha-Reid ([9], Sections 4 and 5) on a class of operators associated with elements of a tensor product Hilbert space to obtain representations of covariance operators.

2. Representations of covariance operators. Let H and \mathfrak{F} be two real separable Hilbert spaces with inner products (\cdot, \cdot) and $\langle \cdot, \cdot \rangle$, respectively; and let $H \odot \mathfrak{F}$ denote the algebraic tensor product of Hand \mathfrak{F} . For any two elements $x = \sum_{i=1}^{n} \mathcal{F}_{i} \odot f_{i}$ and $y = \sum_{j=1}^{m} \eta_{j} \odot g_{j}$, where $\mathcal{F}_{i}, \eta_{j} \in H$ and $f_{i}, g_{i} \in \mathfrak{F}$, put

$$\langle x | y \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} (\xi_i, \eta_j) \langle f_i, g_j \rangle.$$
 (6)

Then, $\langle \cdot | \cdot \rangle$ is an inner product in $H \odot \mathfrak{H}$; and

$$[x]_{2} = \left\langle \sum_{i=1}^{n} \hat{\xi}_{i} \odot f_{i} | \sum_{i=1}^{n} \hat{\xi}_{i} \odot f_{i} \right\rangle^{1/2}$$
(7)

satisfies the norm condition on $H \odot \mathfrak{H}$. Let $H \otimes \mathfrak{H}$ denote the completion of $H \odot \mathfrak{H}$ with respect to the norm defined by (7); then $H \otimes \mathfrak{H}$ is the tensor product Hilbert space of H and \mathfrak{H} . For $x, y \in H \odot \mathfrak{H}$ (where xand y are as defined as above) and $\psi_1, \psi_2 \in \mathfrak{H}$, put

$$F_{x,y}(\psi_1,\psi_2) = \sum_{i,j=1}^{n,m} \langle \xi_i, \eta_j \rangle \langle f_i, \psi_2 \rangle \langle \psi_1, g_j \rangle.$$
(8)

Then $F_{x,y}$ is a bounded bilinear functional on \mathfrak{F} ; and there exists a unique bounded operator, say $S_{x,y}$, in \mathfrak{F} such that $\langle S_{x,y}\psi_1, \psi_2 \rangle = F_{x,y}(\psi_1, \psi_2)$. The operator $S_{x,y}$ has been defined for every pair $x, y \in H \odot \mathfrak{F}$; but $S_{x,y}$ is defined also for any pair $x, y \in H \mathfrak{S} \mathfrak{F}$; since for $x, y \in \mathfrak{S} \mathfrak{F}$ there exists sequences $\{x_n\}, \{y_n\} \subset H \odot \mathfrak{F}$ such that $||x_n - x|| \to 0$, $||y_n - y|| \to 0$, and S_{x_n,y_n} converges in trace norm to a trace class operator $S_{x,y}$ which is independent of the choice of the sequences $\{x_n\}$ and $\{y_n\}$. We now state the following result:

Theorem A (Theorem 4.1 of [9]). For every pair $x, y \in H \otimes \mathfrak{H}$, there exists a unique trace class operator $S_{x,y}$ which is conjugate bilinear in x, y satisfying (i) $S_x = S_{x,x} \ge 0$, (ii) $S_{x,y}^* = S_{y,x}$, (iii) $\operatorname{Tr}[S_{x,y}] = \langle x | y \rangle$, (iv) Uniform norm $||S_{x,y}|| \le \operatorname{Trace}$ norm $[S_{x,y}] \le ||x|| \cdot ||y||$, and (v) $S_{x,y}$ is completely positive; that is, for any finite sequences $\{x_i\} \subset H \widehat{\otimes} \mathfrak{H}$ and $\{z_i\} \subset \mathfrak{H}, \sum_{i,j} \langle z_i, S_{x_i, x_j} z_j \rangle \geq 0.$

In this note we are concerned only with the case $S_x = S_{x,x}$; hence in this case S_x is a positive, self-adjoint operator with finite trace, and S_x is an S-operator.

Let \mathfrak{H} be a real separable Hilbert space, and let $H = L_2(\Omega, \mathcal{A}, \mu)$. In this case $L_2(\Omega, \mathfrak{H}) = L_2(\Omega) \widehat{\otimes} \mathfrak{H}$. We now prove the following representation theorem.

Theorem. For every $x \in L_2(\Omega, \mathfrak{H})$ there is probability measure ν_x on \mathfrak{H} such that the S-operator S_x is the covariance operator of ν_x ; that is S_x admits the representation

$$\langle S_x g, g \rangle = \int_{\mathfrak{H}} \langle f, g \rangle^2 d\nu_x(f). \tag{9}$$

Proof. Let $x \in L_2(\Omega) \odot \mathfrak{H}$, i.e. $x = \sum_{i=1}^k \xi_i \odot h_i$, where $\xi_i \in L_2(\Omega)$ is a real-valued random variable, and $h_i \in \mathfrak{H}$. Now

$$\langle S_x g, g \rangle = \sum_{i,j=1}^{k} (\xi_i, \xi_j) \langle h_i, g \rangle \langle g, h_j \rangle$$

$$= \sum_{i,j=1}^{k} \left[\iint_a \xi_i(\omega) \xi_j(\omega) d\mu(\omega) \right] \langle h_i, g \rangle \langle g, h_j \rangle$$

$$= \int_a \sum_{i,j=1}^{k} \langle h_i, g \rangle \langle g, h_j \rangle \xi_i(\omega) \xi_j(\omega) d\mu(\omega)$$

$$= \int_a \sum_{i,j=1}^{k} \langle \xi_i(\omega) h_i, g \rangle \langle g, \xi_j(\omega) h_j \rangle d\mu(\omega)$$

$$= \int_a \left\langle \sum_{i=1}^{k} \xi_i(\omega) \odot h_i, g \right\rangle^2 d\mu(\omega)$$

$$= \int_a \langle x(\omega), g \rangle^2 d\mu.$$

Hence

$$\langle S_x g, g \rangle = \int_{a} \langle x(\omega), g \rangle^2 d\mu(\omega)$$
 (10)

From the definition of the probability measure ν_x , for every measurable function φ on \mathfrak{H} ,

$$\int_{\mathfrak{H}} \varphi d\nu_x = \int_{\mathfrak{g}} (\varphi \circ x) d\mu.$$
(11)

we can take φ as the continuous function on \mathfrak{F} given by $\varphi(f) = \langle f, g \rangle^2$, for fixed g. Hence

$$\int_{\mathfrak{G}} \langle f, g \rangle^2 d\nu_x(f) = \int_{\mathfrak{G}} \langle x(\omega), g \rangle^2 d\mu(\omega).$$
(12)

Using (12) in (10) we obtain (9) for any $x \in L_2(\Omega) \odot \mathfrak{H}$.

Now let $x \in L_2(\Omega, \mathfrak{H})$. Then there exists a sequence $x_n \in L_2(\Omega) \odot \mathfrak{H}$ such that $[x_n - x]_2 \to 0$, where $[\cdot]_2$ is the crossnorm defined by (4). This implies that $S_{x_n} \to S_x$ in trace norm, and $\langle S_{x_n}g, g \rangle \to \langle S_xg, g \rangle$. We also have $\int_a \langle x_n(\omega), g \rangle^2 d\mu \to \int_a \langle x(\omega), g \rangle^2 d\mu$. Hence from (10) and (12) we obtain (9) for any $x \in L_2(\Omega, \mathfrak{H})$. We now consider another approach to the representation of Soperators. Let x and y be two given elements of \mathfrak{F} . The tensor product $x \otimes y$ represents an operator on \mathfrak{F} whose defining equation is given by $(x \otimes y)z = \langle z, y \rangle x$ for every $z \in \mathfrak{F}$ (cf. Schattan [7], p. 69; [8], p. 7). The following result is utilized:

Theorem B (Theorem 5.1 of [9]). For any pairs $x, y \in L_2(\Omega, \mathfrak{H})$ and $f, g \in \mathfrak{H}$

$$\langle S_{x,y}f,g\rangle = \int_{\mathcal{Q}} \operatorname{Tr}[x(\omega)\otimes y(\omega)\cdot f\otimes g]d\mu(\omega), \qquad (13)$$

and the integrand in (13) is measurable.

As before, we restrict our attention to the case $S_x = S_{xx}$, and take \mathfrak{F} to be a real separable Hilbert space. Using the fact that $(f_1 \otimes f_2)$ $(g_1 \otimes g_2) = \langle g_1, f_2 \rangle f_1 \otimes g_2$, we have $\operatorname{Tr}[x(\omega) \otimes x(\omega) \cdot g \otimes g] = \langle x(\omega), g \rangle^2$. Hence (13) becomes $\langle S_x g, g \rangle = \int_g \langle x(\omega), g \rangle^2 d\mu(\omega)$, which is (10). Utilizing (11) and (12), we obtain (9) for all $x \in L_2(\Omega, \mathfrak{F})$.

3. Examples and applications. In this section we mention a few applications of the above representations and compute the co-variance operators associated with certain random functions.

a. An obvious application is to the characteristic functionals of probability measures in $\mathfrak{M}(\mathfrak{G})$; for example, it follows from (2) that $\hat{\nu}_x(g)$, the characteristic functional of a probability measure $\nu \in \mathfrak{M}(\mathfrak{G})$ induced by $x(\omega)$, is of the form

$$\hat{\nu}_{x}(g) = \exp\left\{-\frac{1}{2}\sum_{i}(\xi_{i},\xi_{j})\langle h_{i},g\rangle\langle g,h_{j}\rangle\right\}, \ g \in \mathfrak{H}$$
(14)

where $x(\omega) = \sum_{i=1}^{k} \hat{\xi}_{i}(\omega) \odot h_{i}$, with $\hat{\xi}_{i}(\omega) \in L_{2}(\Omega)$, $h_{i} \in \mathfrak{H}$.

b. In the study of random equations in Hilbert spaces we frequently encounter transformations of the form $y(\omega) = L[x(\omega)]$, where $x(\omega)$ is a Gaussian random variable and L is an endomorphism of \mathfrak{F} . If m_x and S_x denote the expectation of x and the covariance operator of the measure induced by ν_x respectively; then it is well-known (cf. [1], pp. 141-142) that $m_y = Lm_x$ and $S_y = LS_xL^*$. Hence, given the representation of S_x , an explicit representation of S_y can be obtained.

c. Let $\mathfrak{H} = L_2(T, \Theta, \tau)$ where T = [0, 1], Θ is the σ -algebra of Borel subsets of T, and τ is Lebesque measure on Θ . Let $L_2(\Omega, \mathfrak{H})$ denote the space of all \mathfrak{H} -valued measurable random functions $x = \{x(t, \omega), t \in T\}$ such that $\int_{\mathfrak{g}} ||x||^2 d\mu < \infty$. In this case the tensor product Hilbert space is $L_2(\Omega, \mathfrak{H}) = L_2(\Omega) \widehat{\otimes} \mathfrak{H}(T) = L_2(\Omega \times T)$. Since x is a second-order random function its covariance kernel is of the form

$$R_x(s,t) = \int_a x(s,\omega) x(t,\omega) d\mu(\omega).$$
(15)

An easy consequence of the representation (13) is that the covariance operator S_x on $L_2(T)$ is of the form

$$(S_x f)(s) = \int_T R_x(s, t) f(t) d\tau(t), \quad f \in L_2(T).$$
 (16)

Also, we have $\operatorname{Tr}[S_x] = ([x]_2)^2 = \int_{a} (||x||_2)^2 d\mu(\omega) = \int_{T} R_x(s, s) d\tau(s) = \operatorname{Tr}[R_x].$

We now assume that x is continuous in quadratic mean. In this case the covariance kernel $R_x(s, t)$ is of the form

$$R_x(s,t) = \sum_{i=1}^{\infty} \frac{\varphi_i(s)\varphi_i(t)}{\lambda_i}$$
(17)

where the λ_i are the eigenvalues and the φ_i are the eigenfunctions of $R_x(s, t)$. Inserting (17) and (16) we have

$$(S_x f)(s) = \int_{T_{i=1}}^{\infty} \frac{\varphi_i(s)\varphi_i(t)}{\lambda_i} f(t)d\tau(t)$$
$$= \sum_{i=1}^{\infty} \frac{\varphi_i(s)}{\lambda_i} \int_T \varphi_i(t) f(t)d\tau(t) = \sum_{i=1}^{\infty} \alpha_i \varphi_i(s)$$

where $\alpha_i = \lambda_i^{-1} \langle \varphi_i, f \rangle$. This also follows from the representation of operator S_x ; namely $S_x = \sum_{i=1}^{\infty} \lambda_i^{-1} \varphi_i \otimes \varphi_i$.

d. Let $\mathfrak{H} = l_2$; and let $x \in L_2(\Omega) \widehat{\otimes} l_2$. In this case x is an l_2 -valued random variable; and can be considered as a sequence $\{x_n(\omega)\}$ of real-valued random variables such that $\sum_{n=1}^{\infty} |x_n|^2 < \infty$. Define $R_{ij}^{(x)} = \varepsilon \{x_i x_j\}$. Then, for $g = \{g_n\} \in l_2$,

$$\langle S_x g, g \rangle = \int_{\mathcal{Q}} \langle x(\omega), g \rangle^2 d\mu(\omega) = \int_{\mathcal{Q}} \sum_{i,j=1}^{\infty} x_i(\omega) x_j(\omega) g_i g_j d\mu(\omega)$$
$$= \sum_{i,j=1}^{\infty} g_i R_{ij}^{(x)} g_j.$$

References

- U. Grenander: Probabilities on Algebraic Structures. John Wiley and Sons, New York (1963).
- [2] R. Jajte: On the probability measures in Hilbert spaces. Studia Math., 29, 221-241 (1968).
- [3] N. P. Kandelaki and V. V. Sasonov: On a central limit theorem for random elements with values in Hilbert space (in Russian). Teor. Verojatnost. i Primenen., 9, 43-52 (1964).
- [4] K. R. Parthasarathy: Probability Measures on Metric Spaces. Academic Press, New York (1967).
- [5] Yu. V. Prokhorov: Convergence of random processes and limit theorems in probability theory (in Russian). Teor. Verojatnost. i. Primenen., 1. 177-238 (1956).
- [6] K. Reinschke: Zum zentralen Grenzwertsatz für zufällige Elemente mit Werten aus einem Hilbertraum. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete., 6, 161–169 (1966).

- [7] R. Schattan: A Theory of Cross-Spaces. Princeton University Press, Princeton, N.J. (1950).
- [8] ——: Norm Ideals of Completely Continuous Operators. Springer-Verlag, Berlin (1960).
- [9] H. Umegaki and A. T. Bharucha-Reid: Banach space-valued random variables and tensor products of Banach spaces. J. Math. Anal. Appl. (in press).
- [10] S. R. S. Varadhan: Limit theorems for sums of independent random variables with values in a Hilbert space. Sankhya, 24, 213-238 (1962).