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21. Endomorphism Rings of Modules over Orders
in Artinian Rings
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Tokyo University of Education
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Recently Small [7] proved that if a ring R has a right Artinian
(classical) right quotient ring, then so does the endomorphism ring of
a finitely generated projective right R-module.

On the other hand, it has been shown by Hart [3] that if a ring
R has a semi-simple Artinian (classical) two-sided quotient ring @, so
does the endomorphism ring of a finitely generated torsion free right
R-module M. In this case M is not necessarily projective, but its
quotient module M®,Q is projective as a right @-module. Therefore,
in the case where @ is non-semi-simple, it is interesting to obtain a
condition under which finitely generated torsion free modules have
projective quotient modules. The next proposition of this paper gives
such a condition.

Proposition 1. If a ring R has a two-sided perfect two-sided
quotient ring @, then the following conditions on a finitely generated
right R-module M are equivalent:

(1) M is R-torsion free (in the sense of Levy [5]) and MR rQ is
Q-projective.

(@) M is isomorphic to a direct summand of a right R-module K
such that i}@R‘“QKQ i‘@li, where R is a copy of R and I, is a

i=1

right ideal of R containing o regular element.

In this paper this condition (2), without assuming that M is
finitely generated, will be called condition (A).

Then, we obtain the next main theorem which generalizes the
above results of Small [7, Corollary 2] and Hart [3, Theorem 2].

Theorem 1. If Ris aring with a right (resp. two-sided) Artinian
right (resp. two-sided) quotient ring Q, then the endomorphism ring
Endz(M) of a right R-module M satisfying condition (A) has also a
right (resp. two-sided) Artinian right (resp. two-sided) quotient ring
1somorphic to Endy(M® Q) =End(MQ:Q).

As an application of Theorem 1, we shall prove finally

Theorem 2. In Theorem 1, if @ is quasi-Frobenius and M is
faithful, then Endz(M) has a quasi-Frobenius quotient ring which is
isomorphic to the R-endomorphism ring of the injective hull of M.
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This result implies the Morita-invariance of ‘‘right (resp. two-
sided) order in quasi-Frobenius ring”.

The author wishes to thank Prof. H. Tachikawa for his suggestion
and encouragement.

1. Preliminaries. Let R be a ring. An element s e R is said to
be right (resp. left) regular if s has no non-zero right (resp. left)
annihilator. A right and left regular element is called regular. A
right R-module M is said to be torsion free, if no non-zero element of
M 1is annihilated by a regular element of R. Levy [5, Proposition
1.5] proved that if M is torsion free right R-module and R has a right
quotient ring @, then the correspondence ¢: M—MQ Q defined by
o(m)=mQ1, where m ¢ M, is an R-monomorphism and every right Q-
module M’ such that it contains M as an R-submodule and can be
represented by M'=MQ is Q-isomorphic to M®QQ. In the following
such a module MQ is called a quotient @-module of M. Let M ond N
be torsion free right R-modules. Then every f e Homgz(M,N) can be
extended naturally to f’ € Homy(MQ, NQ) by f/(ms™)= f(m)s~*, where
me M, se R and s regular. Clearly this is the unique extension of f
and it is easy to check Homy(MQ, NQ)=Homz(MQ, NQ). Then the
endomorphism ring End(M) is regarded to be a subring of Endy(MQ)
=End(MQ).

Throughout this paper we assume that R is a ring (not necessarily
with unity) which contains a regular element and that all homomor-
phisms between modules will be written on the left.

2. To begin with we shall prove Proposition 1.

Proof of Proposition 1. (1)=(2). There is a finitely generated

right @-module N’ such that MQ@N’:%} @R, where MQ is the
i=1

quotient @-module of M and Q is a copy of Q. Hence we can choose
a finitely generated torsion free right R-module N such that N'=N@.
Now write K=M®N, then KQ=MQP®NQ, since M and N are R-

torsion free. Let e, -.-,e, be free Q-basis of KQ (:fj @Q“’) and
=1

k, ---, k, be the R-generators of K. Write kt=i €;Dis Pij € Q,
j=1

(i=1,---,%). As Q is the left quotient ring of R, there exist a,;, de R
and d regular such that p,;=d'a,,, (=1, ...,¢, j=1,...,n). Hence

ngj] ejp“R+; e,P,,Z gi} ®e,d'R, where Z is the ring of rational
T [ =1

integers. On the other hand, since @ is the right quotient ring of R
and KQ is the quotient @-module of K, there exist z;, € K, q, € @ such

that 2,q,=ed™, (i=1, .--,m). Put #,=3 e,d"'r,,, Then we have
=

1;4;=0 (ix7), r,9,=1. It is to be noted that every right (resp. left)
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regular element in a left (resp. right) perfect ring with unit is in-
vertible and then regular (cf. Gupta [2]). Hence 7,; and ¢, are regular
in Q and r,;=0 (ixj). Then x;,=e;,d"'ry,, where r, e R. LetI, be a
right ideal of R generated by 7, (¢=1, -..,n). Then we can conclude

that i} @e, d'RDK Qi} @e,d'1,. This completes the proof of (1)=>(2).
i=1 i=1

(2)=@). Clearly M is R-torsion free. Write MON=K, where
N is a submodule of K. Then KQ=MQ®NQ. Since I, contains a

regular element, we have KQ:fL_j D™,
i=1

Proposition 2. If R has a right quotient ring @ and M is an
unital right Q-module, then M, is Q-injective if and only if My is R-
mjective.

Proof. If My is R-injective, then the proof of Gupta [1, Theorem
2.1] is valid even if R has not identity and hence M, is @-injective.
Conversely let M, be Q-injective. To prove that M, is R-injective, it
suffices to show that if B is a submodule of a right R-module 4 and
f:Bzp—Mpg is an R-monomorphism, then f can be extended to g: Az
—Mp, for we can always shift from any homomorphism k: B,—My
to the induced monomorphism % : [B/ker(h)l,—My. Since it is easy
to see that M is R-torsion free, B is R-torsion free. Then f can be
extended to f’: [BQl,—M,, where f'(bs )= f(b)s', beB, scR and s
regular. As was pointed out by Jans [4], T(4A)={a ¢ A|there exists
s € R regular such that as=0} is an R-submodule of A. Since B, and
[A/T(A)]; are R-torsion free, then BN T(4)=0, and B can be regard-
ed to be an R-submodule of [A/T(A)];. As the quotient Q-module of
By is determined uniquely up to isomorphism, [BQ], becomes a Q-sub-
module of [{4/T(A)}Q],. Then f’ can be extended to @-homomorphism
9" [{A/T(A)}Q),—M,, since M, is Q-injective. Let 7: A,—[A/T(A)],
be the cannonical R-homomorphism, then g=g¢'n: Ap—M, is the
desired extension of f.

Let R be a ring with a right quotient ring Q. Let Q® and R®
be copies of @ and R respectively and RYCQ® (¢=1,.--,n). Then a
right R-submodule M of i @R® can be imbedded into i@Q‘i’, and
we can define a right Q-submodule MQ in a natural way. In connex-
ion with Proposition 1 we have the next lemma which generalizes the
result of Hart [3, Theorem 1], in his case M is assumed to be finitely
generated and @ is a two-sided quotient ring.

Lemma 1. Let R be a ring with a right (resp. two-sided) quotient
ring Q and M o right R-submodule of ﬁ] @R such that MQ= f PR®.
i=1

=1

If every right regular (resp. regular) element of Endy(MQ) is invert-
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ible, then Endz(M) has a right (resp. two-sided) quotient ring isomor-
phic to Endy(MQ).

Proof. Let a € Endy(MQ) be arbitrary. Choose the Q-free basis
of MQ e, ---,e,, where ¢, has 1 in 4-th component and 0 elsewhere

G=1,...,n). Put ale)= i €;q:;(q;;€ Q). First we shall consider
=1

the case where Q is the right quotient ring. Then there exists an
element s € R regular such that e;se M and e;q,;8e M (4,5=1, ---,n).

Define f’ € Endo(MQ) by f/'(z)= Zn] ¢,8p,;, where z= ieipi e MQ (p, e Q).
Then the restriction f=f’'| M is i: End;(M), since i;; M implies p, € R.
If ze M, then af ’(z)=wf=le 1980, € M. Hence g'=a f” can be regarded
to be an element of Endz(M). Since s is invertible in @, f” is invertible
(G0 z—eg e;87'p;). Therefore a=9’(f)"!. Next let h e Endz(M)

be regular and A’ e Endy(MQ) the extension of . Assume A'=0
for any 8 e Endy(MQ). Then 8 can be written by g¢:(f1)~', where g1,
f1e Endg(MQ) and g¢,=g¢;|M, f,=/fi|M are elements of End(M).
Therefore #'B=hg/(f})'=0, W9;=0 and hg,=0. Since h is regular
in End,(M), it follows that ¢g,=0 and g;=0. This implies 3=0 and
K is right regular in Endy(MQ). Hence Endy(MQ) is the right
quotient ring of Endz(M).

Next we shall consider the case where @ is the two-sided quotient
ring. We can choose regular elements ¢, wc R such that e;te M,
uq;; e R (4,j=1,---,n). Define f”eEndyo(MQ) by putting f”(2)

= ﬁ] e;tup;, where z= ﬁ] e, e MQ, (p,€ Q). Then the restriction
=1
f”|M is in Endz(M). If ze M, then f”a(z)— Z‘, e;tuq;p,€ M. Then

=f"a can be regarded to be an element of Endz(M). Hence
a=(f")"'9”. As similarly as in the first case every regular element
of Endp(M) is regular in Endy(MQ).

Now we are able to prove Theorem 1.

Proof of Theorem 1. If K=M®N where N is a submodule of
K, then KQ=MQPN Q=f‘_‘ ®Q®. Since Endy(KQ)=Q,, the complete
i=1

ring of n X7 matrices over Q, it is a right (resp. two-sided) Artinian
ring. Hence by Lemma 1, Endy(KQ) is a right (resp. two-sided)
quotient ring of Endg(K). Let ¢ec Endi(K) be the projection MEN
—M. Since e is an idempotent element, by Small [7, Theorem 3] and
its right left symmetry we can deduce that ¢/(Endy(KQ))e’ is a right
(resp. two-sided) Artinian right (resp. two-sided) quotient ring of
e(Endz(K))e, where ¢’ ¢ Endy(KQ) is the extension of e. Since ¢’ is the
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projection MQENQ—MQEQ, we have e(Endz(K))e=Endp(M) and
¢'(Endg(KQ))e’=Endo(M@Q). This completes the proof.

Remark. Let R be a semi-prime right Goldie ring. Then every
non-zero right ideal satisfies condition (A), for it is a direct summand
of an essential right ideal containing a regular element. Therefore,
several results by Hart [3], e.g. Theorems 4-6 are obtained imme-
diately from our Theorem 1.

Proof of Theorem 2. From the assumption, we can easily check
that [MQ], is a faithful, finitely generated and projective @-module.
By the result of Morita [6, Theorem 16.6], End,(MQ) is quasi-
Frobenius. Since Q is quasi-Frobenius, [M@Q], is an injective @-module
and [MQ]; is an injective R-module by Proposition 2. On the other
hand [MQ] is an essential extension of M. Hence it is the injective
hull of M.
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