118. On a Theorem of E. Michael and K. Nagami

By Masao Sakai

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970)

E. Michael [1] and K. Nagami [2] proved the following theorem.

Theorem. Every metacompact and collectionwise normal space is paracompact.

A space is called metacompact if every open covering of it can be refined by a point-finite open covering.

We shall prove this theorem, using the following lemmas for point-finite open covering of a topological space.

Lemma 1. Every point-finite open covering $\{U_{\alpha}\}_{\alpha \in \Lambda}$ of a topological space contains an irreducible subcovering (see [3]).

Lemma 2. For each point-finite open covering $\{U_{\alpha}\}_{\alpha \in A}$ of a normal space, there exists an open covering $\{V_{\alpha}\}_{\alpha \in A}$ of the space such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for every $\alpha \in A$ (see [4]).

Proof of Theorem. 1. Let X be a meta-compact and collectionwise normal space, and C be an any open covering of X. Then, there exists a point-finite open refinement $U = \{U_a\}_{a \in A}$ of the covering C. By Lemma 1, we can assume that the covering U is irreducible. We are going to prove that the open covering U has a σ -discrete open refinement $\{W_n\}_{n=1,2,3,...,}$ $W_n = \{W_{n,\beta}\}_{\beta \in B_n}$. Then, the space X will be paracompact.

2. By Lemma 2, for the irreducible open covering $\{U_{\alpha}\}_{\alpha \in A}$, there exists an open refinement $\{V_{\alpha}\}_{\alpha \in A}$ such that $\bar{V}_{\alpha} \subset U_{\alpha}$, for every $\alpha \in A$. Put $F_{\alpha} = \bar{V}_{\alpha} - \bigcup_{\alpha' \in A} U_{\alpha'}$, then $F_{\alpha} \neq \phi$, for every $\alpha \in A$.

For, if
$$F_{\alpha} = \phi$$
, then $\bigcup_{\substack{\alpha' \in A \\ \alpha' \neq \alpha}} U_{\alpha'} \supset \overline{V}_{\alpha} \supset V_{\alpha}$. By $U_{\alpha'} \supset V_{\alpha'}$,
 $\bigcup_{\substack{\alpha' \in A \\ \alpha' \neq \alpha}} U_{\alpha'} \supset V_{\alpha} \cup \bigcup_{\substack{\alpha' \in A \\ \alpha' \neq \alpha}} V_{\alpha'} = X.$

This contradicts to the irreducibility of covering $\{U_{\alpha}\}_{\alpha\in A}$. Then $F_{\alpha} \neq \phi$.

3. Any point x of the space X which is contained in only one U_{α} of the family $\{U_{\alpha}\}_{\alpha \in A}$, is contained in F_{α} .

For, suppose that $x \in U_{\alpha}$ and $x \in U_{\alpha'}$ $(\alpha' \in A, \alpha' \neq \alpha)$. By $\bar{V}_{\alpha'} \subset U_{\alpha'}$, $x \in V_{\alpha'}$. As the family $\{V_{\alpha}\}_{\alpha \in A}$ is a covering of $X, x \in V_{\alpha} \subset \bar{V}_{\alpha}$. Then, $x \in \bar{V}_{\alpha} - \bigcup_{\alpha' \in A} U_{\alpha'} = F_{\alpha}$.

4. The family $\{F_{\alpha}\}_{\alpha \in A}$ is a closed discrete family.

For, any point x of X is contained in some U_{α} . For a neighborhood of x, put $V(x) = U_{\alpha}$.

By
$$U_{\alpha} \supset \bar{V}_{\alpha} \supset F_{\alpha}$$
,
 $V(x) \cap F_{\alpha} = U_{\alpha} \cap F_{\alpha} = F_{\alpha} \neq \phi$.
For $\alpha' \in A, \, \alpha' \neq \alpha$,
 $V(x) \cap F_{\alpha'} = U_{\alpha} \cap (\bar{V}_{\alpha'} - \bigcup_{\alpha'' \in A} U_{\alpha''}) \subset U_{\alpha} \cap (X - U_{\alpha}) = \phi$.

From these, the family $\{F_{\alpha}\}_{\alpha \in A}$ is discrete. That the sets $F_{\alpha}(\alpha \in A)$ are closed is obvious.

5. Being X collectionwise normal, there exists an open discrete family $\{G_{\alpha}\}_{\alpha \in A}$ such that $G_{\alpha} \supset F_{\alpha}$ for every $\alpha \in A$. Put $W_{\alpha} = G_{\alpha} \cap U_{\alpha}$ for every $\alpha \in A$. The following is obvious.

 $F_{\alpha} \subset W_{\alpha} \subset U_{\alpha}$ and the family $W_1 = \{W_{\alpha}\}_{\alpha \in A}$ is open discrete.

6. Put $W_1 = \bigcup_{\alpha \in A} W_{\alpha}$. By 3, the following is obvious. Any point x of the space X which is contained in only one U_{α} of the family $\{U_{\alpha}\}_{\alpha \in A}$, is contained in W_1 .

7. Put $X_2 = X - W_1$. Being W_1 open, X_2 is closed. As the space X is normal, the subspace X_2 is normal. Then, we can apply Lemmas 1 and 2 in the subspace X_2 .

By 6, any point of X_2 is contained in above two sets U_{α} of the family $\{U_{\alpha}\}_{\alpha \in A}$. Then, $X_2 \subset \bigcup_{\substack{\alpha \in A \\ \alpha' \in A \\ \alpha \neq \alpha'}} U_{\alpha} \cap U_{\alpha'}$. From this, the family

 $\{X_2 \cap U_{\alpha} \cap U_{\alpha'}\}_{\substack{\alpha \in A \\ \alpha \neq \alpha'}}$ is a point-finite open covering of the subspace X_2 .

For this covering, there exists an irreducible open subcovering $\{U_{2,\beta}\}_{\beta \in B_2}$.

8. By Lemma 2, for the open covering $\{U_{2,\beta}\}_{\beta \in B_2}$ there exists an open refinement $\{V_{2,\beta}\}_{\beta \in B_2}$ such that $\bar{V}_{2,\beta} \subset U_{2,\beta}$ for every $\beta \in B_2$. Put $F_{2,\beta} = \bar{V}_{2,\beta} - \bigcup_{\substack{\beta' \in B_2 \\ \beta' \neq \beta}} U_{2,\beta'}$. Then, the family $\{F_{2,\beta}\}_{\beta \in B_2}$ is closed discrete relative to X_2 .

The family $\{F_{2,\beta}\}_{\beta \in B_2}$ is closed discrete relative to X. For, as X_2 is closed in X, the sets $F_{2,\beta}$ are closed in X, for every $\beta \in B_2$. By 6, for every point x of the subspaces X_2 , there exists a neighborhood $U_{2,\beta}$ ($\beta \in B_2$) such that $U_{2,\beta}$ meets only one $F_{2,\beta'}$ ($\beta' \in B_2$). By 7, there exist some U_{α} and $U_{\alpha'}$ ($\alpha, \alpha' \in A$) such that $U_{2,\beta} = X_2 \cap U_{\alpha} \cap U_{\alpha'}$. For a neighborhood of x relative to X, put $V(x) = U_{\alpha} \cap U_{\alpha'}$. Then, for any $\beta' \in B_2$

 $V(x) \cap F_{2,\beta'} = U_{\alpha} \cap U_{\alpha'} \cap X_2 \cap F_{2,\beta'} = U_{2,\beta} \cap F_{2,\beta'}.$

For $\beta' \neq \beta$ $(\beta' = \beta)$, $V(x) \cap F_{2,\beta'} = \phi$ $(\neq \phi)$. Then, the family $\{F_{2,\beta}\}_{\beta \in B_2}$ is closed discrete.

9. Being the space X collectionwise normal, there exists an open discrete family $\{G_{2,\beta}\}_{\beta \in B_2}$ such that $G_{2,\beta} \supset F_{2,\beta}$. For $U_{2,\beta}$ there exists $\alpha, \alpha' \in A, \alpha \neq \alpha'$ such that $U_{2,\beta} = X_2 \cap U_{\alpha} \cap U_{\alpha'}$. Put $W_{2,\beta} = G_{2,\beta} \cap U_{\alpha} \cap U_{\alpha'}$. The following is obvious.

The open family $W_2 = \{W_{2,\beta}\}_{\beta \in B_2}$ is discrete.

10. Put $W_2 = \bigcup_{\beta \in B_2} W_{2,\beta}$. As in 3 and 6, we have the followings.

No. 6]

M. SAKAI

Any point of X_2 which is contained in only one set $U_{2,\beta}$ of the family $\{U_{2,\beta}\}_{\beta \in B_2}$ is contained in W_2 .

Any point of X which is contained in just two sets U_{α} of the family $\{U_{\alpha}\}_{\alpha \in A}$, is contained in $W_1 \cup W_2$.

11. Put $X_3 = X_2 - W_2 = X - (W_1 \cup W_2)$. As in 7, we have the following: any point of X_3 is contained in above 3 sets U_{α} of the family $\{U_{\alpha}\}_{\alpha \in A}$. And we have an open discrete family $W_3 = \{W_{3,\beta}\}_{\beta \in B_3}$.

12. By induction for $n=1, 2, 3, \cdots$, we have open discrete families $W_n = \{W_{n,\beta}\}_{\beta \in B_n}$, where $\{W_{1,\beta}\}_{\beta \in B_1}$ is $\{W_{\alpha}\}_{\alpha \in A}$. Put W_n $= \bigcup_{\beta \in B_n} W_{n,\beta}$. Any point of X which is contained in just n sets U_{α} of the family $\{U_{\alpha}\}_{\alpha \in A}$, is contained in $\bigcup_{k=1}^{n} W_k$. Then $X \subset \bigcup_{n=1}^{\infty} \bigcup_{\beta \in B_n} W_{n,\beta}$, and the families $\{W_n\}_n = 1, 2, 3, \cdots$ are σ -open discrete refinement of $\{U_{\alpha}\}_{\alpha \in A}$, that is, σ -open discrete refinement of the covering C. Then the space X is paracompact.

References

- E. Michael: Point-finite and locally-finite converings. Canad. Jour. of Math., 7, 275-279 (1955).
- [2] K. Nagami: Paracompactness and strong screenability. Nagoya Math. Jour., 8, 83-88 (1955).
- [3] R. Arens and J. Dugundji: Remark on the concept of compactness. Portugaliae Math., 9, 141-143 (1950).
- [4] S. Lefschetz: Algebraic Topology. New York (1942).