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1. Introduction and Theorems.
1.1. Let a be an infinite series and (Sn) be the sequence of its

partial sums. If
1 xn/n--*8L(x)--

_log (l--x) n= sn as x 1,

then the series , an is said to be (L) summable to s. We shall consider
a more general summability. Let (p) be a sequence of nonnegative

numbers and suppose that the series p(x)- , PnX converges for all x,
n=l

0 x 1 and p(x)

P(x)- 1
Pn 8n xn-->8 as x 1,

p(X) =1

then the series , an is said to be (P) summable to s.
About (L) summability o Fourier series, M. Nanda ([1], cf. [2]

and [3]) proved the
Theorem I. If

( 1 g(t)- .[II(U)u-ldu-- o(log 1/t) as t 0

where q(u)--f(Xo+U)-Ff(Xo-U)-2s, then the Fourier series of f is
(L) summable to s at the point Xo.

We shall generalize this theorem to (P) summability in the follow-
ing form.

Theorem 1. Suppose that the sequence (npn) is monotone (non-
decreasing or non-increasing) and concave or convex and that

p(x) (1-- x)2p’(x)c as x 1.

if
2 ) f" G(t)t-dt o(p(x)/(1- x)p’(x)) as x 1

J1

where G(t)-.[,l g(u) du, then the Fourier series of y is (P) summable

to s at the point xo.
The condition (2) is the consequence of

( 3 .[(p(t) / (1 t)p’(t))dt <= Ap (x) / (1- x)p’(x) as x $1

and
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( 4 G(t)-]o Ig(u) ldu- o(p(1- t)/p’(1- t)) as t $ 0.

Further (3) is the consequence of
( 5 ) p(t)/(1- t)p’(t) $ as t $1, for an a< 2.

The function p(x)=(-log (l-x)), b being a positive integer,
satisfies the condition of Theorem I concerning p(x) and also (5). Thus
(4) gives

Corollary 1. If
t 0,

then the Fourier series of f is (P) summable to s at the point Xo where
p(x) (- log (1-- x)), b being a positive integer.

This corollary includes Theorem I as a particular case.

1.2. If L(x) is of bounded variation on an interval (c, 1), 0c1,
then the series an is said to be [L[ summable. Similarly, if P(x)
is of bounded variation on (c, 1), then the series is said to be
summable.

Following theorems are known ([4], [5])
Theorem II. If

1 i p(u) du- h(t) e L(O,( 6 )
t log (2r/t) 2 sin u/2 t log (27r/t)

then the Fourier series of f is ILl summable at the point Xo.
Theorem III. Suppose that (i) the sequence (n Pn) i8 of bounded

variation and that (ii) there is an a, 0 a 1, such that (1- x)p(x)
as x 1. If h(t)/t p(1-t)e L(0, 7r), then the Fourier series of f is P
summable at the point xo.

We shall prove the following

Theorem 2. Suppose that (i) (n Pn) and (n p) are monotone and
concave or convex and that (ii) (1-x)p"(x)/p(x) e L(O, 7r). If
(7) oH(t)t-dti ((1-x)p"(x)/p(x))dx

where U(t)--_[i h(u) du then the Fourier series of f is PI summable

at the point Xo
The condition (7) is satisfied when

f(up"(1 u)/p(1 u))du <= tp"(1 t) / p(1 t) for all t > 0
J0

(8)

and
(9) H(t)p"(1- t) / p(1-- t) e L(0, 1).

If p(x)=--log (l--x), then the condition (8) is satisfied and the
condition (9)becomes (6). Hence Theorem II is a particular case of
Theorem 2. More generally, if p(x)= (--log (1--x)) (b being a positive
integer), then (8) is satisfied and (9) reduces also to (6). Thus we get
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Corollary 2. If the condition (6) is satisfied, then Fourier series

of f is PI summable at the point Xo, where p(x)--(--log (l--x)), b
being a positive integer.

This corollary is not contained in Theorem III, since the sequence
(np) in Corollary 2 is not o bounded variation. Therefore Theorems
III and 2 are mutually exclusive.

2. Proof of Theorem 1.

We can suppose that.[i0(u)du-0 and p-p--O. The sequence

(np n>__3) is also monotone and concave or convex. Let Sn be the
nth partial sum of the Fourier series of f at the point x0, then

r(Sn-- s)-- o(t)t- sin nt dt + o(1),

so that

(-) (t)t- z sin t gt+ o((z)) as 1
1

We shall rove that the integral on the right side is o((z)) as 1.
By integration by parts, the integral equals to

lira (t) pz sin t + (t) pz cos t dr= U+ V,
t0 n=l

where U-0, since tg(t)0 as t0 and the series npx converges.

Now,

npx cos n$
=1

npxe
=1-- (np)x+e<+>/(1--xe)
=1

(np)x+ cos (n + 1)-- x cos n
= (1- x) + 4x sint/2

--1
(1- x) + 4x sint/2

X A(nPn)Xn+ COS (n+ 1)t--x A((n+ 1)Pn+l)Xn+ Cos(n+ 1)t

--1
(1- x) + 4x sint/2

x A()z* eos(+ 1)t+ (1--) A((+ 1)p,)z+ eos(+ 1)t

and then

i i:
Since
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, l(nPn)Xn+- --(l--x) npxn- --x(1--x)p’(x)
and

we get
A(np)x+- --(l--x) A(nPn)X--(1--x)p’(x),

as x ’ 1, by (2) and (1--x)p’(x)-o(p(x)).

V <= Ap’(x) g(t)]dt + (1- x) g(t)[ t- dt
1--

=<A(1- z)’(x) G(t)t-dt+G(z)/r o((x))
1--

Thus the theorem is proved.
3. Proof of Theorem 2.
We shall take s-0 in the definition of and p--p.=0, and sup-

that _[:(u)du=O. Thenpose

()= sin(+l/)t gt.
p(x) 2 sin t/2

By differentiation with respect to x,

2sin t/2 p sin(n+l/2)t(xn/p(x)) dt

i h(t)(= (n+1/2)p cos(n +1/2)t (x/p(x))’)dt
and then

[P’(x)ldxgA Ih(t)ldt =np cos(n+l/2)t(x/p(x)) dx

+A h(t) dt ==p cos(c+l/2)t(x/p(x)) dx

---Q+R.
We shall prove that Q and R are finite, which proves the theorem.
Now, the infinite sum in Q is

n=np cos(n + 1/2)tx--p(x)
p’(x) =Y’nP cos(n+ 1/2)tx
(p(x))

where

+ (1--x) A((n+ 1)Pn+l)X cos(n+ 3/2)t
and similarly

(P(X)) U= -1 (. A(nPn)Xn+l cos(n / a/s)t
p’(x) (1- x) + 4 sint/2 \-2_-
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+(1--x), z/((n+ 1)p/)x/ cos(n+3/2)t

Since p(x) <= p’(x) p"(x) and

zl(np)x=--(1--x)p"(x)-- (l--x)p’(x),
x

zl(np)x (1-- x)p"(x) + (l--x)--p’(x),

we get

(- x) + t p(x) + p(x - (l-x) + e. p(x)
on (c, 1). Now

Q-AI: h(t)] dtj S dx

AS- h(t) dt (;-to p"(X)p(x) dx + -1;1_(1 x) P"(x)dX)p(x)
+A;I h(t) dtl(1- x)-P"(X) dx- p(x)

A; p"(x) dx- ; ;-p(x Jo
Ih(t) ldt+A (1-x) p’(X)_p(x) dx

-x t
dt+A

_<Al(l_x). p"(x) dxf1-c H(t) dt + Ap(x) - t

<A- H(t)t dti (l_x) p"(x), dx + A<A- p(x)
by (7). Similarly R is also finite and then P(x) is of bounded varia-
tion, which is to be proved.
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