151. Summability of Fourier Series

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, The Australian National University, Canberra, Australia

(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1970)

1. Introduction and Theorems.

1.1. Let $\sum a_{n}$ be an infinite series and $\left(s_{n}\right)$ be the sequence of its partial sums. If

$$
L(x)=\frac{1}{-\log (1-x)} \sum_{n=1}^{\infty} s_{n} x^{n} / n \rightarrow s \quad \text { as } \quad x \uparrow 1,
$$

then the series $\sum a_{n}$ is said to be (L) summable to s. We shall consider a more general summability. Let $\left(p_{n}\right)$ be a sequence of nonnegative numbers and suppose that the series $p(x)=\sum_{n=1}^{\infty} p_{n} x^{n}$ converges for all x, $0<x<1$ and $p(x) \uparrow \infty$ as $x \uparrow 1$. If

$$
P(x)=\frac{1}{p(x)} \sum_{n=1}^{\infty} p_{n} s_{n} x^{n} \rightarrow s \quad \text { as } \quad x \uparrow 1
$$

then the series $\sum a_{n}$ is said to be (P) summable to s.
About (L) summability of Fourier series, M. Nanda ([1], cf. [2] and [3]) proved the

Theorem I. If

$$
\begin{equation*}
g(t)=\int_{t}^{\pi} \varphi(u) u^{-1} d u=o(\log 1 / t) \quad \text { as } \quad t \downarrow 0 \tag{1}
\end{equation*}
$$

where $\varphi(u)=f\left(x_{0}+u\right)+f\left(x_{0}-u\right)-2 s$, then the Fourier series of f is (L) summable to s at the point x_{0}.

We shall generalize this theorem to (P) summability in the following form.

Theorem 1. Suppose that the sequence ($n p_{n}$) is monotone (nondecreasing or non-increasing) and concave or convex and that

$$
p(x) /(1-x)^{2} p^{\prime}(x) \rightarrow \infty \quad \text { as } \quad x \uparrow 1
$$

If

$$
\begin{equation*}
\int_{1-x}^{\pi} G(t) t^{-3} d t=o\left(p(x) /(1-x)^{2} p^{\prime}(x)\right) \quad \text { as } \quad x \uparrow 1 \tag{2}
\end{equation*}
$$

where $G(t)=\int_{0}^{t}|g(u)| d u$, then the Fourier series of f is (P) summable to s at the point x_{0}.

The condition (2) is the consequence of

$$
\begin{equation*}
\int_{0}^{x}\left(p(t) /(1-t)^{3} p^{\prime}(t)\right) d t \leqq A p(x) /(1-x)^{2} p^{\prime}(x) \quad \text { as } \quad x \uparrow 1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
G(t)=\int_{0}^{t}|g(u)| d u=o\left(p(1-t) / p^{\prime}(1-t)\right) \quad \text { as } \quad t \downarrow 0 . \tag{4}
\end{equation*}
$$

Further (3) is the consequence of

$$
\begin{equation*}
p(t) /(1-t)^{a} p^{\prime}(t) \uparrow \quad \text { as } \quad t \uparrow 1, \quad \text { for an } a<2 \tag{5}
\end{equation*}
$$

The function $p(x)=(-\log (1-x))^{b}, b$ being a positive integer, satisfies the condition of Theorem 1 concerning $p(x)$ and also (5). Thus (4) gives

Corollary 1. If

$$
G(t)=\int_{0}^{t}|g(u)| d u=o(t \log 1 / t) \quad \text { as } \quad t \downarrow 0
$$

then the Fourier series of f is (P) summable to s at the point x_{0} where $p(x)=(-\log (1-x))^{b}$, b being a positive integer.

This corollary includes Theorem I as a particular case.
1.2. If $L(x)$ is of bounded variation on an interval $(c, 1), 0<c<1$, then the series $\sum a_{n}$ is said to be $|L|$ summable. Similarly, if $P(x)$ is of bounded variation on ($c, 1$), then the series is said to be $|P|$ summable.

Following theorems are known ([4], [5])
Theorem II. If

$$
\begin{equation*}
\frac{1}{t \log (2 \pi / t)} \int_{t}^{\pi} \frac{\varphi(u)}{2 \sin u / 2} d u=\frac{h(t)}{t \log (2 \pi / t)} \in L(0, \pi) \tag{6}
\end{equation*}
$$

then the Fourier series of f is $|L|$ summable at the point x_{0}.
Theorem III. Suppose that (i) the sequence ($n p_{n}$) is of bounded variation and that (ii) there is an $a, 0<a<1$, such that $(1-x)^{a} p(x) \downarrow$ as $x \uparrow 1$. If $h(t) / t p(1-t) \in L(0, \pi)$, then the Fourier series of f is P summable at the point x_{0}.

We shall prove the following
Theorem 2. Suppose that (i) $\left(n p_{n}\right)$ and $\left(n^{2} p_{n}\right)$ are monotone and concave or convex and that (ii) $(1-x)^{2} p^{\prime \prime}(x) / p(x) \in L(0, \pi)$. If

$$
\begin{equation*}
\int_{0}^{1} H(t) t^{-3} d t \int_{1-t}^{1}\left((1-x)^{2} p^{\prime \prime}(x) / p(x)\right) d x<\infty \tag{7}
\end{equation*}
$$

where $H(t)=\int_{0}^{t}|h(u)| d u$, then the Fourier series of f is $|P|$ summable at the point x_{0}

The condition (7) is satisfied when

$$
\begin{equation*}
\int_{0}^{t}\left(u^{2} p^{\prime \prime}(1-u) / p(1-u)\right) d u \leqq t^{3} p^{\prime \prime}(1-t) / p(1-t) \quad \text { for all } \quad t>0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
H(t) p^{\prime \prime}(1-t) / p(1-t) \in L(0,1) \tag{9}
\end{equation*}
$$

If $p(x)=-\log (1-x)$, then the condition (8) is satisfied and the condition (9) becomes (6). Hence Theorem II is a particular case of Theorem 2. More generally, if $p(x)=(-\log (1-x))^{b}$ (b being a positive integer), then (8) is satisfied and (9) reduces also to (6). Thus we get

Corollary 2. If the condition (6) is satisfied, then Fourier series of f is $|P|$ summable at the point x_{0}, where $p(x)=(-\log (1-x))^{b}, b$ being a positive integer.

This corollary is not contained in Theorem III, since the sequence $\left(n p_{n}\right)$ in Corollary 2 is not of bounded variation. Therefore Theorems III and 2 are mutually exclusive.

2. Proof of Theorem 1.

We can suppose that $\int_{0}^{\pi} \varphi(u) d u=0$ and $p_{1}=p_{2}=0$. The sequence ($n p_{n} ; n \geqq 3$) is also monotone and concave or convex. Let s_{n} be the nth partial sum of the Fourier series of f at the point x_{0}, then

$$
\pi\left(s_{n}-s\right)=\int_{0}^{\pi} \varphi(t) t^{-1} \sin n t d t+o(1)
$$

so that

$$
\pi \sum_{n=1}^{\infty} p_{n}\left(s_{n}-s\right) x^{n}=\int_{0}^{\pi} \varphi(t) t^{-1}\left(\sum_{n=1}^{\infty} p_{n} x^{n} \sin n t\right) d t+o(p(x)) \quad \text { as } \quad x \uparrow 1
$$

We shall prove that the integral on the right side is $o(p(x))$ as $x \uparrow 1$. By integration by parts, the integral equals to

$$
\lim _{t \rightarrow 0}\left(g(t) \sum_{n=1}^{\infty} p_{n} x^{n} \sin n t\right)+\int_{0}^{\pi} g(t)\left(\sum_{n=1}^{\infty} n p_{n} x^{n} \cos n t\right) d t=U+V
$$

where $U=0$, since $t g(t) \rightarrow 0$ as $t \rightarrow 0$ and the series $\sum n p_{n} x^{n}$ converges. Now,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n p_{n} x^{n} \cos n t \\
&= \mathcal{R} \sum_{n=1}^{\infty} n p_{n} x^{n} e^{i n t} \\
&=-\mathcal{R} \sum_{n=1}^{\infty} \Delta\left(n p_{n}\right) x^{n+1} e^{i(n+1) t} /\left(1-x e^{i t}\right) \\
&=-\sum_{n=1}^{\infty} \Delta\left(n p_{n}\right) x^{n+1} \frac{\cos (n+1) t-x \cos n t}{(1-x)^{2}+4 x \sin ^{2} t / 2} \\
&= \frac{-1}{(1-x)^{2}+4 x \sin ^{2} t / 2} \\
& \times\left(\sum_{n=1}^{\infty} \Delta\left(n p_{n}\right) x^{n+1} \cos (n+1) t-x^{2} \sum_{n=1}^{\infty} \Delta\left((n+1) p_{n+1}\right) x^{n+1} \cos (n+1) t\right) \\
&= \frac{-1}{(1-x)^{2}+4 x \sin ^{2} t / 2} \\
& \times\left(\sum_{n=1}^{\infty} \Delta^{2}\left(n p_{n}\right) x^{n+1} \cos (n+1) t+(1-x)^{2} \sum_{n=1}^{\infty} \Delta\left((n+1) p_{n+1}\right) x^{n+1} \cos (n+1) t\right)
\end{aligned}
$$

and then

$$
\begin{aligned}
V \leqq & A\left((1-x)^{-2} \int_{0}^{1-x}|g(t)| d t+\int_{1-x}^{\pi}|g(t)| t^{-2} d t\right) \\
& \cdot\left(\left|\sum_{n=1}^{\infty} \Delta^{2}\left(n p_{n}\right) x^{n+1}\right|+(1-x)\left|\sum_{n=1}^{\infty} \Delta\left(n p_{n}\right) x^{n}\right|+A\right) .
\end{aligned}
$$

Since

$$
\sum \Delta\left(n p_{n}\right) x^{n+1}=-(1-x) \sum n p_{n} x^{n}=-x(1-x) p^{\prime}(x)
$$

and

$$
\sum \Delta^{2}\left(n p_{n}\right) x^{n+1}=-(1-x) \sum \Delta\left(n p_{n}\right) x^{n}=(1-x)^{2} p^{\prime}(x)
$$

we get

$$
\begin{aligned}
V & \leqq p^{\prime}(x)\left(\int_{0}^{1-x}|g(t)| d t+(1-x)^{2} \int_{1-x}^{\pi}|g(t)| t^{-2} d t\right) \\
& \leqq A(1-x)^{2} p^{\prime}(x)\left(\int_{1-x}^{\pi} G(t) t^{-3} d t+G(\pi) / \pi^{2}\right)=o(p(x))
\end{aligned}
$$

as $x \uparrow 1$, by (2) and $(1-x)^{2} p^{\prime}(x)=o(p(x))$. Thus the theorem is proved.

3. Proof of Theorem 2.

We shall take $s=0$ in the definition of φ and $p_{1}=p_{2}=0$, and suppose that $\int_{0}^{\pi} \varphi(u) d u=0$. Then

$$
P(x)=\frac{1}{p(x)} \sum_{n=1}^{\infty} p_{n} s_{n} x^{n}=\frac{1}{\pi p(x)} \int_{0}^{\pi} \frac{\varphi(t)}{2 \sin t / 2}\left(\sum_{n=1}^{\infty} p_{n} \sin (n+1 / 2) t x^{n}\right) d t
$$

By differentiation with respect to x,

$$
\begin{aligned}
P^{\prime}(x) & =\int_{0}^{\pi} \frac{\varphi(t)}{2 \sin t / 2}\left(\sum_{n=1}^{\infty} p_{n} \sin (n+1 / 2) t\left(x^{n} / p(x)\right)^{\prime}\right) d t \\
& =\int_{0}^{\pi} h(t)\left(\sum_{n=1}^{\infty}(n+1 / 2) p_{n} \cos (n+1 / 2) t\left(x^{n} / p(x)\right)^{\prime}\right) d t
\end{aligned}
$$

and then

$$
\begin{aligned}
\int_{0}^{1}\left|P^{\prime}(x)\right| d x \leqq & A \int_{0}^{\pi}|h(t)| d t \int_{c}^{1}\left|\sum_{n=1}^{\infty} n p_{n} \cos (n+1 / 2) t\left(x^{n} / p(x)\right)^{\prime}\right| d x \\
& +A \int_{0}^{\pi}|h(t)| d t \int_{c}^{1}\left|\sum_{n=1}^{\infty} p_{n} \cos (c+1 / 2) t\left(x^{n} / p(x)\right)^{\prime}\right| d x \\
= & Q+R .
\end{aligned}
$$

We shall prove that Q and R are finite, which proves the theorem. Now, the infinite sum in Q is

$$
\begin{aligned}
s & =\frac{1}{p(x)} \sum_{n=1}^{\infty} n^{2} p_{n} \cos (n+1 / 2) t x^{n-1}-\frac{p^{\prime}(x)}{(p(x))^{2}} \sum_{n=1}^{\infty} n p_{n} \cos (n+1 / 2) t x^{n} \\
& =T-U
\end{aligned}
$$

where

$$
\begin{aligned}
p(x) T= & \mathcal{R} \sum_{n=1}^{\infty} n^{2} p_{n} x^{n-1} e^{i(n+1 / 2) t}=-\mathcal{R}\left(e^{3 i t} \sum_{n=1}^{\infty} \Delta\left(n^{2} p_{n}\right) x^{n} e^{i n t} /\left(1-x e^{i t}\right)\right) \\
= & -\sum_{n=1}^{\infty} \Delta\left(n^{2} p_{n}\right) x^{n} \frac{\cos (n+3 / 2) t-x \cos (n+1 / 2) t}{(1-x)^{2}+4 \sin ^{2} t / 2} \\
= & \frac{-1}{(1-x)^{2}+4 \sin ^{2} t / 2}\left(\sum_{n=1}^{\infty} \Delta^{2}\left(n^{2} p_{n}\right) x^{n} \cos (n+3 / 2) t\right. \\
& \left.+(1-x)^{2} \sum_{n=1}^{\infty} \Delta\left((n+1)^{2} p_{n+1}\right) x^{n} \cos (n+3 / 2) t\right)
\end{aligned}
$$

and similarly

$$
\frac{(p(x))^{2}}{p^{\prime}(x)} U=\frac{-1}{(1-x)^{2}+4 \sin ^{2} t / 2}\left(\sum_{n=1}^{\infty} d^{2}\left(n p_{n}\right) x^{n+1} \cos (n+3 / 2) t\right.
$$

$$
\left.+(1-x)^{2} \sum_{n=1}^{\infty} \Delta\left((n+1) p_{n+1}\right) x^{n+1} \cos (n+3 / 2) t\right) .
$$

Since $p(x) \leqq p^{\prime}(x) \leqq p^{\prime \prime}(x)$ and

$$
\begin{aligned}
& \sum \Delta\left(n^{2} p_{n}\right) x^{n}=-(1-x) p^{\prime \prime}(x)-\frac{(1-x)}{x} p^{\prime}(x), \\
& \sum \Delta^{2}\left(n^{2} p_{n}\right) x^{n}=(1-x)^{2} p^{\prime \prime}(x)+\frac{(1-x)^{2}}{x} p^{\prime}(x),
\end{aligned}
$$

we get

$$
|S| \leqq \frac{A(1-x)^{2}}{(1-x)^{2}+t^{2}}\left(\frac{p^{\prime \prime}(x)}{p(x)}+\left(\frac{p^{\prime}(x)}{p(x)}\right)^{2}\right) \leqq \frac{A(1-x)^{2}}{(1-x)^{2}+t^{2}} \frac{p^{\prime \prime}(x)}{p(x)},
$$

on $(c, 1)$. Now

$$
\begin{aligned}
Q= & A \int_{0}^{\pi}|h(t)| d t \int_{c}^{1}|S| d x \\
= & A \int_{0}^{1-t}|h(t)| d t\left(\int_{c}^{1-t} \frac{p^{\prime \prime}(x)}{p(x)} d x+\frac{1}{t^{2}} \int_{1-t}^{1}(1-x)^{2} \frac{p^{\prime \prime}(x)}{p(x)} d x\right) \\
& +A \int_{1-c}^{\pi}|h(t)| d t \int_{c}^{1}(1-x)^{2} \frac{p^{\prime \prime}(x)}{p(x)} d x \\
= & A \int_{c}^{1} \frac{p^{\prime \prime}(x)}{p(x)} d x \int_{0}^{1-x}|h(t)| d t+A \int_{c}^{1}(1-x)^{2} \frac{p^{\prime \prime}(x)}{p(x)} d x \int_{1-x}^{1-c} \frac{|h(t)|}{t^{2}} d t+A \\
\leqq & A \int_{c}^{1}(1-x)^{2} \frac{p^{\prime \prime}(x)}{p(x)} d x \int_{1-x}^{1-c} \frac{H(t)}{t^{3}} d t+A \\
\leqq & A \int_{0}^{1-c} \frac{H(t)}{t^{3}} d t \int_{1-t}^{1}(1-x)^{2} \frac{p^{\prime \prime}(x)}{p(x)} d x+A \leqq A
\end{aligned}
$$

by (7). Similarly R is also finite and then $P(x)$ is of bounded variation, which is to be proved.

References

[1] M. Nanda: The summability (L) of Fourier series and the first differenciated Fourier series. Quart. J. Math. Oxford s., 13(2), 229-234 (1962).
[2] F. C. Hsiang: Summability (L) of the Fourier series. Bull. Am. Math. Soc., 67, 150-153 (1962).
[3] R. Mohanty and M. Nanda: The summability by logarithmic means of the derived Fourier series. Quart. J. Math. Oxford s., 6(2), 53-58 (1955).
[4] R. Mohanty and J. N. Patnaik: On the absolute L-summability of a Fourier series. J. London Math. Soc., 43, 452-456 (1968).
[5] M. Izumi and S. Izumi: Absolute summability by logarithmic method of Fourier series. Proc. Japan Acad., 46, 656-659 (1970).

