147. Some Conditions on an Operator Implying Normality. III

By S. K. Berberian
The University of Texas at Austin
(Comm. by Kinjirô Kunugr, m. J. A., Sept. 12, 1970)

The purpose of this note is to record some generalizations of results proved recently by I. Istrățescu [9].

Notations. If T is an operator (bounded linear, in Hilbert space), we write $\sigma(T)$ for the spectrum of $T, \omega(T)$ for the Weyl spectrum of $T, W(T)$ for the numerical range of T and $\mathrm{Cl} W(T)$ for its closure, and \hat{T} for the image of T in the Calkin algebra (the algebra of all operators modulo the ideal of compact operators). We refer to [2]-[4] or [7] for terminology.

Theorem 1. If T is a seminormal operator such that $T^{p}=S T^{* p} S^{-1}$ $+C$, where p is a positive integer, C is compact, and $0 \notin \mathrm{Cl} W(S)$, then T is normal.

Proof. By hypothesis, $\hat{T}^{p}=\hat{S} \hat{T}^{* p} \hat{S}^{-1}$; moreover, it is easy to see that $\bar{W}(\hat{S}) \subset \bar{W}(S)=\mathrm{Cl} W(S)$, where \bar{W} denotes closed numerical range [5, Theorem 3], thus $0 \notin \bar{W}(\hat{S})$. By a theorem of J. P. Williams [12], $\sigma\left(\hat{T}^{p}\right)$ is real, i.e., $\left\{\lambda^{p}: \lambda \in \sigma(\hat{T})\right\}$ is real, thus $\sigma(\hat{T})$ lies entirely on p lines through the origin. Since $\partial \omega(T) \subset \sigma(\hat{T})$, where ∂ denotes boundary (this is true for any operator [cf. 6, Theorem 2.2]), it follows that $\omega(T)$ also lies on these lines, and in particular $\omega(T)$ has zero area. Since Weyl's theorem holds for T [1, Example 6], $\sigma(T)-\omega(T)$ is countable; thus $\sigma(T)$ also has zero area, therefore T is normal by a theorem of C. R. Putnam [11].
\{The following argument is of interest because it uses far less than the full force of Putnam's deep theorem. Assuming T is a seminormal operator such that $\omega(T)$ lies on finitely many lines through (say) the origin, we assert that T is normal. We can suppose T hyponormal. Writing $T=T_{1} \oplus T_{2}$ with T_{1} normal and $\sigma\left(T_{2}\right) \subset \omega(T)$ [3, Corollary 6.2], we are reduced to the case that $\sigma(T)$ lies on finitely many lines through the origin. Assume to the contrary that T is nonnormal. Splitting off the maximal normal direct summand of T, we can suppose that T has no normal direct summands. In particular, $\sigma(T)$ can have no isolated points (these would be eigenvalues, with reducing eigenspaces). Rotating T by a scalar of absolute value 1 , we can suppose that the positive real axis contains a point of $\sigma(T)$ of maximum modulus, say
b. Then, for suitable $a, 0<a<b$, the vertical strip $\{\alpha+i \beta: a \leq \alpha$ $\leq b, \beta$ real intersects $\sigma(T)$ only at points of $[a, b]$. Let $T=H+i J$ be the Cartesian form of T and let $H=\int \lambda d E$ be the spectral representation of H. Since b is not an isolated point of $\sigma(T),(a, b) \cap \sigma(T) \neq \emptyset$; moreover, $\operatorname{Re} \sigma(T)=\sigma(H)$ [10, Theorem I], thus $(a, b) \cap \sigma(H) \neq \emptyset$ and therefore $E((a, b)) \neq 0$. Thus, writing $\Delta=[a, b]$, we have also $E(\Delta) \neq 0$. Let T_{Δ} be the restriction of $E(\Delta) T E(\Delta)$ to the range of $E(\Delta)$ (i.e., the compression of T to that subspace). Then T_{Δ} is hyponormal, and $\sigma\left(T_{4}\right) \subset \Delta$ (cf. [10, proof of Theorem II] or [11, proof of Lemma 3]); it follows that T_{Δ} is normal (in fact, self-adjoint [10, Corollary of Theorem I]) and is therefore a direct summand of T [11, Lemma 5], a contradiction.\}

Theorem 2. If T is an operator such that (1) $\sigma(\hat{T})=\{0\}$, (2) T is reduced by each of its finite-dimensional eigenspaces, and (3) T is reduction-spectraloid, then T is normal and compact.

Proof. Condition (3) means that every direct summand of T is spectraloid (an operator is spectraloid if its numerical radius and spectral radius coincide). Since $\partial \omega(T) \subset \sigma(\hat{T})=\{0\}$, it follows that $\omega(T)=\{0\}$. Let \mathscr{M} be the closed linear span of the finite-dimensional eigenspaces of T, and let $T_{1}=T\left|\mathcal{M}, T_{2}=T\right| \mathscr{M}^{\perp}$; thus $T=T_{1} \oplus T_{2}$, where T_{1} is normal and T_{2} has no eigenvalues of finite multiplicity [3, Proposition 4.1]. We assert that $T_{2}=0$ (therefore $T=T_{1} \oplus 0$ is normal). Since $\omega(T)=\omega\left(T_{1}\right) \cup \omega\left(T_{2}\right)$ [1, Example 5] and $\omega\left(T_{2}\right)=\sigma\left(T_{2}\right)$ [1, Lemma 1], we have $\sigma\left(T_{2}\right)=\omega\left(T_{2}\right) \subset \omega(T)=\{0\}$; by hypothesis, T_{2} is spectraloid, therefore $T_{2}=0$. Thus T is normal; moreover, T is compact ($[1$, Example 7] or [3, remarks following Corollary 6.3]), i.e., $\hat{T}=0$.

Theorem 3. If T is an operator such that (1) $\sigma(\hat{T})$ is countable, (2) T is reduced by each of its eigenspaces, and (3) T is reductionisoloid, then T is normal.

Proof. Condition (3) means that every direct summand of T is isoloid (an operator is isoloid if every isolated point of its spectrum is an eigenvalue). Since $\partial \omega(T) \subset \sigma(\hat{T}), \omega(T)$ is also countable. (Indeed, $\omega(T)=\partial \omega(T)$; if, on the contrary, $\omega(T)$ had an interior point λ, then every ray from λ would exit $\omega(T)$ at a boundary point.) Let \mathscr{M} be the closed linear span of the eigenspaces of T, and let $T_{1}=T\left|\mathcal{M}, T_{2}=T\right| \mathscr{M}^{\perp}$; thus $T=T_{1} \oplus T_{2}$, where T_{1} is normal and T_{2} has no eigenvalues [3, Proposition 4.1]. We assert that $\mathscr{M}^{\perp}=\{0\}$ (therefore $T=T_{1}$ is normal). Assume to the contrary. As argued in the proof of Theorem 2, $\sigma\left(T_{2}\right)$ $=\omega\left(T_{2}\right) \subset \omega(T)$, therefore $\sigma\left(T_{2}\right)$ is also countable (and nonempty, because $\mathscr{M}^{\perp} \neq\{0\}$) ; it follows that $\sigma\left(T_{2}\right)$ has at least one isolated point, and therefore, by (3), an eigenvalue, a contradiction.

Remarks. Theorem 1 is proved in [9, Theorem 1] with an added hypothesis on $\sigma(T)$.

The following remarks show that either Theorem 2 or 3 generalizes [9, Theorem 2]. (i) If $T=Q+C$, where Q is quasinilpotent and C is compact, then $\sigma(\hat{T})=\sigma(\hat{Q}) \subset \sigma(Q)=\{0\}$. (ii) If T is convexoid and $\sigma(T)$ lies on a convex curve, then every eigenvalue of T lies on the boundary of $W(T)$, therefore every eigenspace of T reduces $T[8$, Satz 2]. (iii) Every convexoid operator is spectraloid [7, p. 115]. (iv) If T is restriction-convexoid (i.e., if the restriction of T to every invariant subspace is convexoid), then T is isoloid [2, Lemma 2], and therefore restriction-isoloid.

Theorem 4 of [9] is as follows: If T is an operator such that (1) T is polynomially compact, (2) $\sigma(T)$ lies on a convex curve, and (3) T is restriction-convexoid, then T is normal. In view of remarks (ii) and (iv) above, this theorem is extended by either of the following results: If T is (1) polynomially compact, (2^{\prime}) reduced by each of its finite-dimensional eigenspaces, and (3) restriction-convexoid, then T is normal [3, Theorem 6.7]. If T is (1) polynomially compact, ($2^{\prime \prime}$) reduced by each of its eigenspaces and (3^{\prime}) reduction-isoloid, then T is normal [3, Theorem 6.5].

References

[1] S. K. Berberian: An extension of Weyl's theorem to a class of not necessarily normal operators. Michigan Math. J., 16, 273-279 (1969).
[2] --: Some conditions on an operator implying normality. Math. Ann., 184 188-192 (1970).
[3] ——: The Weyl spectrum of an operator. J. Math. Mech. (to appear).
[4] -: Some conditions on an operator implying normality. II. Proc. Amer. Math. Soc. (to appear).
[5] S. K. Berberian and G. H. Orland: On the closure of the numerical range of an operator. Proc. Amer. Math. Soc., 18, 499-503 (1967).
[6] I. C. Gohberg and M. G. Kreǐn: The basic propositions on defect numbers, root numbers and indices of linear operators (Russian). Uspehi Mat. Nauk (N.S.), 12 no. 2 (74), 43-118 (1957); translated in Amer. Math. Soc. Transl., 13(2) 185-264 (1960).
[7] P. R. Halmos: A Hilbert Space Problem Book. Van Nostrand, Princeton, N. J. (1967).
[8] S. Hildebrandt: Über den numerischen Wertebereich eines Operators. Math. Ann., 163, 230-247 (1966).
[9] I. Istrǎţescu: Structure theorems for some classes of operators. Proc. Japan Acad., 45, 586-589 (1969).
[10] C. R. Putnam: On the spectra of semi-normal operators. Trans. Amer. Math. Soc., 119, 509-523 (1965).
[11] --: An inequality for the area of hyponormal spectra (to appear).
[12] J. P. Williams: Operators similar to their adjoints. Proc. Amer. Math. Soc., 20, 121-123 (1969).

