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147. Some Conditions on an Operator
Implying Normality. III

By S. K. BEIBERIAN
The University of Texas at Austin

(Comm. by Kinjir.5 KUNUGI, M. $. A., Sept. 12, 1970)

The purpose of this note is to record some generalizations of
results proved recently by I. Istriitescu [9].

Notations. If T is an operator (bounded linear, in Hilbert space),
we write a(T) for the spectrum of T, w(T) for the Weyl spectrum of
T, W(T) for the numerical range of T and C1 W(T) for its closure, and

for the image of T in the Calkin algebra (the algebra of all operators
modulo the ideal of compact operators). We refer to [2]-[4] or [7]
for terminology.

Theorem 1. If T is a seminormal operator such that T-ST*pS-1

+ C, where p is a positive integer, C is compact, and 0 C1 W(S), then
T is normal.

Proof. By hypothesis, -’*p-i; moreover, it is easy to see
that lYd()c I(S)=C1 W(S), where IYV denotes closed numerical range

[5, Theorem 3], thus 0 e IYV(). By a theorem of J. P. Williams [12],
a(2%) is real, i.e., {2" 2 e a()} is real, thus a() lies entirely on p lines
through the origin. Since 3(o(T)ca(), where 3 denotes boundary
(this is true or any operator [cf. 6, Theorem 2.2]), it ollows that w(T)
also lies on these lines, and in particular w(T) has zero area. Since
Weyl’s theorem holds or T [1, Example 6], 6(T)-w(T) is countable;
thus a(T) also has zero area, therefore T is normal by a theorem of
C. R. Putnam [11].

{The following argument is of interest because it uses ar less than
the ull force of Putnam’s deep theorem. Assuming T is a seminormal
operator such that co(T) lies on finitely many lines through (say) the
origin, we assert that T is normal. We can suppose T hyponormal.
Writing T=TqT with T normal and a(T)cw(T) [3, Corollary 6.2],
we are reduced to the case that a(T) lies on finitely many lines through
the origin. Assume to the contrary that T is nonnormal. Splitting
off the maximal normal direct summand of T, we can suppose that T
has no normal direct summands. In particular, a(T) can have no
isolated points (these would be eigenvalues, with reducing eigenspaces).
Rotating T by a scalar of absolute value 1, we can suppose that the
positive real axis contains a point of a(T) of maximum modulus, say
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b. Then, for suitable a, 0 a b, the vertical strip {c+ifl"
<_ b, /9 real} intersects a(T) only at points o [a, b]. Let T=H+iJ be

the Cartesian form of T and let H-.[ 2 dE be the spectral represent-

ation o H. Since b is not an isolated point of a(T), (a, b) a(T));
moreover, Re a(T)-a(H) [10, Theorem I], thus (a,b)a(H))and
therefore E((a, b))0. Thus, writing z/-[a, b], we have also E()0.
Let T be the restriction of E()TE() to the range of E() (i.e., the
compression o T to that subspace). Then T is hyponormal, and
a(T)A (el. [I0, proof of Theorem II] or [II, proof of Lemma 3]); it
follows that T is normal (in fact, self-adjoint [I0, Corollary of
Theorem I]) and is therefore a direct summand of T [ii, Lemma 5], a
contradiction.}

Theorem 2. If T is an operator such that (1) a()-{0}, (2) T is
reduced by each of its finite-dimensional eigenspaces, and (3) T is
reduction-spectraloid, then T is normal and compact.

Proof. Condition (3)means that every direct summand of T is
spectraloid (an operator is spectraloid if its numerical radius and
spectral radius coincide). Since 3w(T)a()={O}, it follows that
w(T) {0}. Let /be the closed linear span of the finite-dimensional
eigenspaces of T, and let T--T [/, T--TI+/- thus T= TT., where
T is normal and T. has no eigenvalues of finite multiplicity [3,
Proposition 4.1]. We assert that T-0 (therefore T--T0 is normal).
Since o(T)-- w(T1) [3 w(T) [1, Example 5] and w(T)-- a(T) [1, Lemma
1], we have a(T) w(T)c w(T) {O} by hypothesis, T. is spectraloid,
therefore T--0. Thus T is normal; moreover, T is compact ([1,
Example 7] or [3, remarks following Corollary 6.3]), i.e., -0.

Theorem 3. If T is an operator such that (1) a() is countable,
(2) T is reduced by each of its eigenspaces, and (3) T is reduction-
isoloid, then T is normal.

Proof. Condition (3)means that every direct summand of T is
isoloid (an operator is isoloid if every isolated point of its spectrum is
an eigenvalue). Since 3w(T)a(), co(T) is .also countable. (Indeed,
co(T) 3w(T) if, on the contrary, w(T) had an interior point 2, then
every ray from 2 would exit w(T) at a boundary point.) Let/be the
closed linear span of the eigenspaces of T, and let T- TI/, T-- TI/+/-
thus T--TT., where T is normal and T has no eigenvalues [3,
Proposition 4.1]. We assert that /+/---{0} (therefore T= T is normal).
Assume to the contrary. As argued in the proof of Theorem 2, a(T)
w(T) w(T), therefore a(T) is also countable (and nonempty,

because /+/- #: {0}); it follows that a(T) has at least one isolated point,
and therefore, by (3), an eigenvalue, a contradiction.
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Remarks. Theorem 1 is proved in [9, Theorem 1] with an added
hypothesis on a(T).

The following remarks show that either Theorem 2 or 3 gener-
alizes [9, Theorem 2]. (i) If T--Q-c-C, where Q is quasinilpotent
and C is compact, then a()=a(()a(Q)-{0}. (ii) I T is convexoid
and a(T) lies on a convex curve, then every eigenvalue of T lies on the
boundary of W(T), therefore every eigenspace of T reduces T [8, Satz
2]. (iii) Every convexoid operator is spectraloid [7, p. 115]. (iv) If
T is restriction-convexoid (i.e., if the restriction of T to every invariant
subspace is convexoid), then T is isoloid [2, Lemma 2], and therefore
restriction-isoloid.

Theorem 4 of [9] is as follows: If T is an operator such that (1)
T is polynomially compact, (2) a(T) lies on a convex curve, and (3) T
is restriction-convexoid, then T is normal. In view of remarks (ii)
and (iv) above, this theorem is extended by either of the following
results: If T is (1) polynomially compact, (2’) reduced by each of its
finite-dimensional eigenspaces, and (3) restriction-convexoid, then T is
normal [3, Theorem 6.7]. If T is (1) polynomially compact, (2") reduced
by each of its eigenspaces and (3’) reduction-isoloid, then T is normal
[3, Theorem 6.5].
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