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1. The neutron transport process has been studied by Harris ([1])
and Mullikin ([5]) as an application o the theory of discrete-time
branching processes. The main problems are the asymptotic behavior
of the number of neutrons, the extinction probability and the rate o
convergence of the extinction probability at time t to the extinction
probability. In this paper we consider similar problems or a mono-
energetic and isotropic neutron transport process on a bounded homo-
geneous domain. We will ormulate the model as a continuous-time
branching process and apply the general theory of such processes ([2]).
Main results are the theorems 15 below. It will be seen that the
expected number of new-born neutrons plays an essential role in the
above problems. This is a typical property o branching processes,
which is well known or Galton-Watson processes.

2. Let D be a bounded closed convex domain in the three-dimen-
sional Euclidian space R with a smooth boundary and t9 be the unit
sphere in R. We denote by G the product space D/2 and 3G the set
(x, w) where x belongs to the boundary o D and w is a direction exit-
ing the domain; i.e., (w, n)_>_0 where n is the direction of the outer-
normal at x. We ormulate our model of neutron transport process
as a continuous-time branching process as follows; a particle at x e D
starting with unit speed in the direction w*) will, at a random time T
which is exponentially distributed with mean a-, be absorbed, scat-
tered, or multiplied by fission. I it leaves the domain D before T,
then it is absorbed. The direction of new particles is supposed to be
isotropically distributed. Each o new particles, independently each
other, performs a similar motion as the original one. We can construct
such a branching process on a suitable probability space ([2]) and every
probabilistic argument below is based on this process.

Let F[$]- pn where p is the probability that n neutrons are

produced when fission occurs. (In particular P0 is the probability of
absorption and p the probability of scattering.) We will assume
F’[1] c and P0 + P 1. The first assumption guarantees that the

*) This statement will be simplified below as "starting at (x, o)."
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explosion does not occur in finite time. By the general theory, the
extinction probability q(t, x, o9) at time t starting at (x, w) is the unique
solution of

( u(, w)-w.u(t, x, w)-au(t, x, w)/aF[t(t, x)](-Au(t, x, w))

( 1 ) J
x, oo)= 1, (x, oo) e G

!,u(O + x, oo)=O.

Here, "" means the direction average; t(t, x)- .1-!-[ u(t, x, w)dw.

The extinction probability q(x, w) starting at (x, w), which is given as
lim q(t, x, w), is the smallest solution o
t-*co

2 ) Au=O in G, u(x, w)=l i (x, w) e 3G, O<=u(x, w)=<l.
This equation has a trivial solution u(x,w)=l. Let E(x,y; )be the
unction ae-(+)-/47lx--yl onDD or each complex 2, and c*- be
the largest positive eigenvalue o the operator induced by the kernel
E(x, y; 0) on the Banach space C(D) o all continuous unctions on D
with sup-norm.

Lemma 1 (Pazy-Rabinowitz [6]). If F’[1]_<_c*, then (2) has no
non-trivial solution and hence q(x,w)=l. If F’[1]c*, it has the
unique non-trivial solution which is, therefore, equal to q(x, w). Fur-
thermore, q(x, w) 1, if (x, w) e G-3G, and in q(x, w) 0.

o In this section we shall consider the ollowing equation.

( u(t oo) w. Vu(t, x, w)- au(t, x, w)+ k(x)t(t, x)(= Bu(t, x, w))

( 3 )u(t, x, w)= 0 if (x, w) e 3G
!,u(0 +, x, w)= f(x, w)

where k(x) is continuous on D, bounded, and bounded away from 0 by
a positive constant. Let Co(G) be the Banach space of all continuous
functions on G which vanish on 3G with sup-norm I1" II, and H(G)(H(D))
be the Hilbert space of all spuare integrable functions with L2-norm

11"112 on G(resp. D). First we shall consider the ollowing eigenvalue
problem in the space Co(G) or H(G).
( 4 B=2+, +(x, w)=O if (x, w) e 3G.
I is the solution o (4), then (?(x)=(x) satisfies

( 5 q(x)-.[gE(x, y; 2)q(y)k(y)dy(-E(2)(x))

Conversely, i (? e C(D) is the solution o (5), then there exists a unique
solution @ o (4) such that =. S. Ukai has proved that there exist
infinitely many real eigenvalues of B, the largest one is simple, and
the corresponding eigenunction is everywhere positive ([7]).

Lemma 2. Let 2o be the real eigenvalue of B with maximal real
part. Then there exist no eigenvalues of the form 2o+iC, c#-O.
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Proof. Suppose that 2=20+ic is a eigenvalue oi B with corre-
sponding eigenfunction (x, w). Since=satisfies =E(2), we
have I1 (x) <: E(20) (x).
Assume (x) E(20) I (x), then

(I l, ) <(E(0) l, )-- (I 1, E(0)*)= (I l, )
Therefore IlE(20)ll.
By virtue of the simplicity of ,

(x)-(x)e and f is a continuous unction on D.
From the definition

f E(x, y; 0) (Y) exp {i{f(y)-f(x) c] x-yl}}k(y)dy,(x)
D

and observing that is real, we have

-_.[E(x, y 0)f(Y) cos {f(y) f(x) c lx-- y }k(y)dy.(x)
By the definition of , we must have cos{f(y)-f(x)-clx-yl}-l.
Since f is continuous, f(y)-f(x)-clx-yl-O, but this is a contradic-
tion if c4:0, and lemma is proved.

The largest eigenvalue/(fl) of E() as a unction of real is conti-
nuous, and strictly decreasing or -a, as shown by S. Ukai ([7]).
The strict decreasing property of/() or real can be proved easily
by using the next lemma.

Lemma :} (Karlin [4]). Suppose that E is completely continuous
and strictly positive operator over a Banach space, then the largest
eigenvalue r of E is given by

r-sup {2lx:k:0, x>=O, Ex>=2x}-inf {21x0, x>=O, Ex<=2x}.
Lemma 4. t(B) is strictly decreasing.

Proof. Let be the eigenfunction corresponding to/(/9). Since

is everywhere positive on D, is bounded away from 0 by a positive
constant, i.e. is a strictly positive element. We may assume that

I111=1. Then or every positive e, there exists a positive constant

>0 such that {E(fl--e)--E(fl)}>= Hence E(fl-) >= E(fl)+ ]

>= (/(fl) + ])f, therefore/(fl ) >__/(fl) + ] >/(fl) by Lemma 3.

Keeping the JSrgens’ results ([3]) in mind, we can obtain the
following

Lemma 5. There exists a one-parameter semigroup Mt on Co(G)
or on H(G), such that u(t, x, o))=Mtf(x, o)) satisfies (3). Moreover there
exist positive constants To and p such that for every t>=To, and for
every f e Co(G)

IIMtf(x, w) et(f 4*)(x, w)ll <= et O(e-"tllfl )
where o is the eigenvalue of B with maximal real part, and (*) is

the corresponding eigenfunction of B (resp. B*). When f is in H(G),
the same estimate holds if we replace only IIf]l in the right-hand side
by Ilfll.
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If k(x)--aF’[1] the solution u(t, x, w) of equation (3) represents the
expected number of neutrons at time t starting at (x, w). Let c be the
eigenvalue of B with maximal real part in this case. Then from strict
decreasing property of/2(/5), we have

Lemma 6. 0, =0, or oOaccordingas F’[1]c*,F’[1]=c*,
or F’[1] c*, respectively.

4. We shall study the asymptotic behavior of r(t, x, w)= q(x, 09)
-q(t, x, w). Let a be as above, and p(x, w)(*(x, w)) be the corre-
sponding eigenfunction of B (resp. B*).

Theorem 1. Suppose F’[1] c*, and F"[1] c, then there exist
positive constants C and such that

r(t, x, w)=Cetp(x, w)+etO(e-t), t.
Theorem 2. Suppose F’[1]=c*, and F"’[1] c, then there exists

a positive constant C such that
r(t, x, w) C(x, w)/t+O(1/t), t-

Theorem 3. Suppose F’[1]c*, and F"[1]c, then q(x, 0))l
and there exist positive constants C and such that

r(t, x, w)-- C3ert(x, 0)) + ertO(e-t),
where , is the eigenvalue of B in the case k(x)--aF’[O(x)], and (x,
is the corresponding eigenfunction. In this case, /(0)1, and 0

from the strict increasing property of [(fl).
Let Z be the number of particles in EG at time t starting at

(x, o).
Theorem 4. Suppose F’[1] c*, and F"[1] c. Then there exists

a non-negative random variable W such that

{w>0}={z?-oo as t-} a.s.,
and for every Ec_ G such that (IE, 1)* >0,

E[iZ{et(iE, +.)}-1_ Wi2]_O(e-,t)
where e is independent of E.

Theorem 5. Suppose F’[1]-c*, and F"[1]c. Then for every

El, E2, ., E,, G such that (lEe, 1)0 (i-- 1, 2, ., n), the joint distri-

bution of {t2-1aF"[1](+2, +*)}-I(Z1, Z, ., Z) under the condition

Z#O, converges to that of ((I,, +*), (I, *), ..., (I, *)). W, when

t-oo, where W is exponentially distributed with mean 1.
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