2. A Quadratic Extension

By Takasi NAGAHARA

Department of Mathematics, Okayama University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1971)

Throughout this paper A will be a commutative ring with an identity element 1, and B a subring of A containing the identity element 1 of A.

In [2], K. Kishimoto proved a theorem concerning quadratic extensions of commutative rings which is as follows: Assume that B contains a field of characteristic $\neq 2$ (containing 1). Let A=B+Bd and $d^2 \in B$. Let A be B-projective and $\{1 \otimes 1, 1 \otimes d\}$ a free B_M -basis of A_M for every maximal ideal M of B where B_M is a localization of B at M and $A_M=B_M\otimes_B A$. Then, A/B is a Galois extension with a Galois group of order 2 if and only if d^2 is inversible in B.

The purpose of this note is to prove the following theorem which contains the above Kishimoto's result.¹⁾

Theorem. Let $A=B+Bd\supseteq B$ and $d^2 \in B$. Then, A/B is a Galois extension if and only if $\{1, d\}$ is a free B-basis of A and $2 \cdot 1$, d^2 are inversible in B.

First we shall prove the following

Lemma 1. Let $A=B+Ba\supseteq B$, and let A/B be a Galois extension with a Galois group \mathfrak{G} . Then

- (1) G is of order 2.
- (2) For $\sigma \neq 1 \in \mathfrak{G}$, $a \sigma(a)$ is inversible in A.
- (3) $\{1, a\}$ is a free B-basis of A.
- (4) If $a^2 = b_0 + b_1 a$ ($b_0, b_1 \in B$) then $2a b_1$ is inversible in A.

Proof. Let $\sigma \neq 1 \in \mathfrak{G}$. We suppose that $a - \sigma(a)$ is not inversible in A. Then there exists a maximal ideal M_0 of A such that $M_0 \ni a - \sigma(a)$. For an arbitrary element u + va of $A(u, v \in B)$, we have u + va $-\sigma(u+va) = v(a-\sigma(a)) \in M_0$. This contradicts to the result of [1, Theorem 1.3 (f)]. Hence $a - \sigma(a)$ is inversible in A. If r + sa = 0 ($r, s \in B$) then $r + s\sigma(a) = 0$; whence $s(a - \sigma(a)) = 0$ which implies s = 0 and r = 0. This shows that $\{1, a\}$ is a free B-basis of A. Let n be the order of \mathfrak{G} . Then by [1, Theorem 1.3 (e)], $A \bigotimes_B A$ is a free $(A \otimes 1)$ -module of rank n. Since $A \otimes A = (A \otimes 1)(1 \otimes 1) + (A \otimes 1)(1 \otimes a)$, it follows that n = 2. Then $a + \sigma(a), a\sigma(a) \in B$, and $a^2 = (a + \sigma(a))a - a\sigma(a)$. Hence if $a^2 = b_1a + b_0$

¹⁾ Let A=B+Bd. Then, it is proved easily that $\{1, d\}$ is a free B-basis of A if and only if $\{1\otimes 1, 1\otimes d\}$ is a free B_M -basis of A_M for every maximal ideal M of B.

Quadratic Extension

No. 1]

 $(b_1, b_0 \in B)$ then $b_1 = a + \sigma(a)$, and thus we have $2a - b_1 = a - \sigma(a)$ which is inversible in A.

Next, we shall prove the following

Lemma 2. Let $A=B+Ba\supseteq B$. Then, A/B is a Galois extension if and only if there holds that

- (1) $\{1, a\}$ is a free B-basis of A, and
- (2) if $a^2 = b_0 + b_1 a$ ($b_0, b_1 \in B$) then $2a b_1$ is inversible in A.

Proof. If A/B is a Galois extension then there hold (1) and (2) by Lemma 1. We assume (1) and (2). Let X be an indeterminate and $f(X) = X^2 - b_1 X - b_0$. Then the B-algebra B[X]/(f(X)) is isomorphic to A under the mapping $u + v\bar{X} \rightarrow u + va$ $(u, v \in B)$ where $\bar{X} = X + (f(X))$. Let f'(X) be the derivative of f(X). Then $f'(a) = 2a - b_1$ is inversible in A. Hence $f'(\bar{X})$ is inversible in $B[\bar{X}]$. Therefore it follows from [3, Theorem 2] that A/B is a Galois extension.²⁾

Now, we shall prove our theorem.

Proof of Theorem. We assume that A/B is a Galois extension. Then by Lemma 2, $\{1, d\}$ is a free *B*-basis of *A* and 2*d* is inversible in *A*; whence $2 \cdot 1$ and d^2 is inversible in *B*. Conversely, if $\{1, d\}$ is a free *B*-basis of *A* and $2 \cdot 1$, d^2 are inversible in *B*, then 2*d* is inversible in *A*; and hence by Lemma 2, A/B is a Galois extension.

References

- S. U. Chase, D. K. Harrison, and A. Rosenberg: Galois theory and Galois cohomology of commutative rings. Mem. Amer. Math. Soc., No. 52, 15-33 (1965).
- [2] K. Kishimoto: Note on quadratic extensions of rings. J. Fac. Sci. Shinshu Univ., Matsumoto, Japan, 5, 25-28 (1970).
- [3] T. Nagahara: Characterization of separable polynomials over a commutative ring. Proc. Japan Acad., 46, 1011-1015 (1970).

²⁾ Let \mathfrak{G}_1 be a Galois group of A/B. Then $\sigma(a)=b_1-a$ for $\sigma \neq 1 \in \mathfrak{G}_1$. Hence if \mathfrak{G}_2 is a Galois group of A/B then $\mathfrak{G}_2=\mathfrak{G}_1$. For $2a-b_1$, we have three casis: (i) $2\cdot 1\neq 0$ and is not inversible in A (and so in B); (ii) $2\cdot 1$ is inversible in A; (iii) $2\cdot 1=0$. In case (ii), set $u=(2a-b_1)^2$, then $u\in B$ and A is B-algebra isomorphic to $B[X]/(X^2-u)$. In case (iii), set $v=(b_1^{-1}a)^2-b_1^{-1}a$, then $v\in B$ and A is B-algebra isomorphic to $B[X]/(X^2-X-v)$.