2. A Quadratic Extension

By Takasi Nagahara
Department of Mathematics, Okayama University
(Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1971)

Throughout this paper A will be a commutative ring with an identity element 1 , and B a subring of A containing the identity element 1 of A.

In [2], K. Kishimoto proved a theorem concerning quadratic extensions of commutative rings which is as follows: Assume that B contains a field of characteristic $\neq 2$ (containing 1). Let $A=B+B d$ and $d^{2} \in B$. Let A be B-projective and $\{1 \otimes 1,1 \otimes d\}$ a free B_{M}-basis of A_{M} for every maximal ideal M of B where B_{M} is a localization of B at M and $A_{M}=B_{M} \otimes_{B} A$. Then, A / B is a Galois extension with a Galois group of order 2 if and only if d^{2} is inversible in B.

The purpose of this note is to prove the following theorem which contains the above Kishimoto's result. ${ }^{1)}$

Theorem. Let $A=B+B d \supseteq B$ and $d^{2} \in B$. Then, A / B is a Galois extension if and only if $\{1, d\}$ is a free B-basis of A and $2 \cdot 1, d^{2}$ are inversible in B.

First we shall prove the following
Lemma 1. Let $A=B+B a \supseteq B$, and let A / B be a Galois extension with a Galois group (5). Then
(1) 『S is of order 2.
(2) For $\sigma \neq 1 \in \mathscr{G}, a-\sigma(a)$ is inversible in A.
(3) $\{1, a\}$ is a free B-basis of A.
(4) If $a^{2}=b_{0}+b_{1} a\left(b_{0}, b_{1} \in B\right)$ then $2 a-b_{1}$ is inversible in A.

Proof. Let $\sigma \neq 1 \in \mathscr{G}$. We suppose that $a-\sigma(a)$ is not inversible in A. Then there exists a maximal ideal M_{0} of A such that $M_{0} \ni a-\sigma(\alpha)$. For an arbitrary element $u+v a$ of $A(u, v \in B)$, we have $u+v a$ $-\sigma(u+v a)=v(a-\sigma(a)) \in M_{0}$. This contradicts to the result of [1, Theorem $1.3(\mathrm{f})]$. Hence $a-\sigma(a)$ is inversible in A. If $r+s a=0(r, s \in B)$ then $r+s \sigma(a)=0$; whence $s(a-\sigma(a))=0$ which implies $s=0$ and $r=0$. This shows that $\{1, a\}$ is a free B-basis of A. Let n be the order of \mathbb{B}. Then by [1, Theorem 1.3 (e)], $A \otimes \otimes_{B} A$ is a free ($A \otimes 1$)-module of rank n. Since $A \otimes A=(A \otimes 1)(1 \otimes 1)+(A \otimes 1)(1 \otimes a)$, it follows that $n=2$. Then $a+\sigma(a), a \sigma(\mathrm{a}) \in B$, and $a^{2}=(a+\sigma(a)) a-a \sigma(a)$. Hence if $a^{2}=b_{1} a+b_{0}$

1) Let $A=B+B d$. Then, it is proved easily that $\{1, d\}$ is a free B-basis of A if and only if $\{1 \otimes 1,1 \otimes d\}$ is a free B_{M}-basis of A_{M} for every maximal ideal M of B.
($b_{1}, b_{0} \in B$) then $b_{1}=a+\sigma(\alpha)$, and thus we have $2 a-b_{1}=a-\sigma(\alpha)$ which is inversible in A.

Next, we shall prove the following
Lemma 2. Let $A=B+B a \supseteq B$. Then, A / B is a Galois extension if and only if there holds that
(1) $\{1, a\}$ is a free B-basis of A, and
(2) if $a^{2}=b_{0}+b_{1} a\left(b_{0}, b_{1} \in B\right)$ then $2 a-b_{1}$ is inversible in A.

Proof. If A / B is a Galois extension then there hold (1) and (2) by Lemma 1. We assume (1) and (2). Let X be an indeterminate and $f(X)=X^{2}-b_{1} X-b_{0}$. Then the B-algebra $B[X] /(f(X))$ is isomorphic to A under the mapping $u+v \bar{X} \rightarrow u+v a(u, v \in B)$ where $\bar{X}=X+(f(X))$. Let $f^{\prime}(X)$ be the derivative of $f(X)$. Then $f^{\prime}(a)=2 a-b_{1}$ is inversible in A. Hence $f^{\prime}(\bar{X})$ is inversible in $B[\bar{X}]$. Therefore it follows from [3, Theorem 2] that A / B is a Galois extension. ${ }^{2)}$

Now, we shall prove our theorem.
Proof of Theorem. We assume that A / B is a Galois extension. Then by Lemma 2, $\{1, d\}$ is a free B-basis of A and $2 d$ is inversible in A; whence 2.1 and d^{2} is inversible in B. Conversely, if $\{1, d\}$ is a free B-basis of A and $2 \cdot 1, d^{2}$ are inversible in B, then $2 d$ is inversible in A; and hence by Lemma $2, A / B$ is a Galois extension.

References

[1] S. U. Chase, D. K. Harrison, and A. Rosenberg: Galois theory and Galois cohomology of commutative rings. Mem. Amer. Math. Soc., No. 52, 15-33 (1965).
[2] K. Kishimoto: Note on quadratic extensions of rings. J. Fac. Sci. Shinshu Univ., Matsumoto, Japan, 5, 25-28 (1970).
[3] T. Nagahara: Characterization of separable polynomials over a commutative ring. Proc. Japan Acad., 46, 1011-1015 (1970).

[^0]
[^0]: 2) Let \mathscr{G}_{1} be a Galois group of A / B. Then $\sigma(\alpha)=b_{1}-a$ for $\sigma \neq 1 \in \mathbb{G}_{1}$. Hence if \mathscr{F}_{2} is a Galois group of A / B then $\mathscr{G}_{2}=\mathscr{G}_{1}$. For $2 a-b_{1}$, we have three casis: (i) $2 \cdot 1 \neq 0$ and is not inversible in A (and so in B); (ii) $2 \cdot 1$ is inversible in A; (iii) $2 \cdot 1=0$. In case (ii), set $u=\left(2 a-b_{1}\right)^{2}$, then $u \in B$ and A is B-algebra isomorphic to $B[X] /\left(X^{2}-u\right)$. In case (iii), set $v=\left(b_{1}^{-1} a\right)^{2}-b_{1}^{-1} a$, then $v \in B$ and A is B-algebra isomorphic to $B[X] /\left(X^{2}-X-v\right)$.
