60. An Extension of an Integral. I

By Masahiro TAKAHASHI
Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjirô Kunugi, M. J. A., March 12, 1971)

1. Introduction. An integral σ with respect to an integral structure Γ was defined in the author [3]. An example of integrals of this type is 1 -dimensional (or generally n-dimensional) Lebesgue integral of bounded measurable functions over measure-finite measurable sets (see Introduction in [1]). In this case, however, we can not deal with such integrals as

$$
\int_{-\infty}^{\infty} f(x) d x \quad \text { where } f(x)= \begin{cases}x^{-2} & (1<x) \\ x^{-1 / 2} & (0<x \leqq 1) \\ 0 & (x \leqq 0)\end{cases}
$$

in our way. We shall extend in this paper the integral σ to an 'integral' $\bar{\sigma}$ and then integrals of the above type may be dealt in terms of $\bar{\sigma}$.
2. Extension theorems. Let $\Gamma=(\Lambda ; \mathcal{S}, \mathcal{G}, Q)$ be an integral structure and σ an integral with respect to Γ.

Denote by \mathcal{M}, \mathscr{F}, and J the total ring, the total functional group, and the third group, respectively, of Λ and let $\overline{\mathcal{S}}$ be the σ-ring generated by \mathcal{S}.

Let Ω be the set of all elements (X, f, μ) of $\mathscr{M} \times \mathscr{F} \times Q$ satisfying the following conditions:

1) There exist $X_{i} \in \mathcal{S}, i=1,2, \cdots$, such that $X_{i} f \in \mathcal{G}$ for any i and such that $X_{i} \uparrow X(i \rightarrow \infty)$.
2) If $X_{i}^{(k)} \in \mathcal{S}, X_{i}^{(k)} f \in \mathcal{G}$, for $i=1,2, \cdots$, and if $X_{i}^{(k)} \uparrow X(i \rightarrow \infty)$, where $k=1,2$, then for any neighborhood V of $0 \in J$ there exists a positive integer n such that $\sigma\left(X_{i}^{(1)}, X_{l}^{(1)} u f, \mu\right)-\sigma\left(X_{m}^{(2)}, X_{m}^{(2)} f, \mu\right) \in V$ for any $l \geqq n$ and $m \geqq n$.
The set Ω defined above will be called the carrier of Γ.
Let us assume the following:
3) $\sigma\left(X_{i}, g, \mu\right) \rightarrow 0(i \rightarrow \infty)$ for $X_{i} \in \mathcal{S}, i=1,2, \cdots$, such that $X_{i \downarrow} 0$ $(i \rightarrow \infty)$, for any $g \in \mathcal{G}$ and $\mu \in Q$.
4) \mathcal{S} is a pseudo- σ-ring.
5) J is Hausdorff and complete.

Then we have the following theorems, which will be proved in Part II of this paper.

Theorem 1. Under the above assumptions,

1) $\mathcal{S} \times \mathcal{G} \times Q \subset \Omega \subset \overline{\mathcal{S}} \times \mathscr{F} \times Q$.
2) For any $X, Y \in \overline{\mathcal{S}}, f \in \mathscr{F}$, and $\mu \in Q$, it holds that $(X Y, f, \mu) \in \Omega$
if and only if $(X, Y f, \mu) \in \Omega$.
3) For any $f \in \mathscr{F}$ and $\mu \in Q$, the set $\mathcal{S}(f, \mu)=\{X \mid(X, f, \mu) \in \Omega\}$ is an ideal of $\overline{\mathcal{S}}$ and consequently is a pseudo- σ-ring.
4) For any $X \in \overline{\mathcal{S}}$ and $\mu \in Q$, the set $\mathcal{G}(X, \mu)=\{f \mid(X, f, \mu) \in \Omega\}$ is a subgroup of \mathscr{F}.

Theorem 2. There exists a unique map $\bar{\sigma}$ of Ω into J satisfying the conditions:

1) $\bar{\sigma}$ is an extension of σ.
2) For any $X, Y \in \overline{\mathcal{S}}, f \in \mathscr{F}$, and $\mu \in Q,(X Y, f, \mu) \in \Omega$ implies $\bar{\sigma}(X Y, f, \mu)=\bar{\sigma}(X, Y f, \mu)$.
3) For any $f \in \mathscr{F}$ and $\mu \in Q$, the $\operatorname{map} \bar{\sigma}_{f, \mu}(X)=\bar{\sigma}(X, f, \mu)$ on $\mathcal{S}(f, \mu)$ is a measure.
Further, this map $\bar{\sigma}$ satisfies the following:
4) For any $X \in \overline{\mathcal{S}}$ and $\mu \in Q$, the $\operatorname{map} \bar{\sigma}_{X, \mu}(f)=\bar{\sigma}(X, f, \mu)$ on $\mathcal{G}(X, \mu)$ is a homomorphism.

The map $\bar{\sigma}$ in Theorem 2 will be called the measure extension of σ.
To show that the domain of $\bar{\sigma}$ is sufficiently large, in a sense, we shall prove the next proposition. Note that the uniqueness of $\bar{\sigma}$ in Theorem 2 is easily verified by means of (i), (ii), and (iv) in the proof of the proposition.

Proposition 1. Consider the following conditions on a pair $\left(\Omega^{\prime}, \sigma^{\prime}\right)$:

1) $\Omega^{\prime} \subset \mathcal{M} \times \mathscr{F} \times Q$ and σ^{\prime} is a map of Ω^{\prime} into J.
2) For any $(X, f, \mu) \in \Omega^{\prime}$, there exist $X_{i} \in \mathcal{S}, i=1,2, \cdots$, such that $X_{i} f \in \mathcal{G}$ for any i and such that $X_{i} \uparrow X(i \rightarrow \infty)$.
3) For $X \in \mathcal{S}$ and $f \in \mathscr{F}$ such that $X f \in \mathcal{G}$, and for any $\mu \in Q$, we have (a) $(X, f, \mu) \in \Omega^{\prime}$ and (b) $\sigma^{\prime}(X, f, \mu)=\sigma(X, X f, \mu)$.
4) For any $f \in \mathscr{F}$ and $\mu \in Q$, ($\left.{ }^{\prime}\right)$ the set $\mathcal{S}^{\prime}(f, \mu)=\left\{X \mid(X, f, \mu) \in \Omega^{\prime}\right\}$ is a subring of \mathcal{M} and $\left(\mathrm{b}^{\prime}\right)$ the map $\sigma_{f, \mu}^{\prime}(X)=\sigma^{\prime}(X, f, \mu)$ on $\mathcal{S}^{\prime}(f, \mu)$ is a measure.
Then a necessary and sufficient condition for a pair ($\Omega^{\prime}, \sigma^{\prime}$) to satisfy the above conditions is to be such a pair that Ω^{\prime} is a subset of Ω satisfying (a) in 3) and (a') in 4) and that σ^{\prime} is the restriction of $\bar{\sigma}$ on Ω^{\prime}. Further, Ω satisfies (a) and (a').

Proof. (i) The sufficiency is easily verified even if we assume that $\bar{\sigma}$ is an arbitrary map satisfying the conditions on $\bar{\sigma}: 1$), 2), and 3) in Theorem 2. To prove the necessity, let us show that (ii) if ($\Omega^{\prime}, \sigma^{\prime}$) and ($\Omega^{\prime}, \sigma^{\prime \prime}$) both satisfy the conditions, then $\sigma^{\prime}=\sigma^{\prime \prime}$. For $(X, f, \mu) \in \Omega^{\prime}$ and for $X_{i} \in \mathcal{S}, i=1,2, \cdots$, such that $X_{i} f \in G$ for any i and such that $X_{i} \uparrow X$ $(i \rightarrow \infty)$, we have $\sigma^{\prime}(X, f, \mu)=\sigma_{f, \mu}^{\prime}(X)=\lim _{i \rightarrow \infty} \sigma_{f, \mu}^{\prime}\left(X_{i}\right)=\lim _{i \rightarrow \infty} \sigma^{\prime}\left(X_{i}, f, \mu\right)$ $=\lim _{i \rightarrow \infty} \sigma\left(X_{i}, X_{i} f, \mu\right)$, and this implies (ii). Next let us show that (iii) Ω^{\prime} is a subset of Ω. Let (X, f, μ) be an element of Ω^{\prime} and suppose that $X_{i}^{(k)} \in \mathcal{S}, X_{i}^{(k)} f \in \mathcal{G}$, for $i=1,2, \cdots$, and that $X_{i}^{(k)} \uparrow X(i \rightarrow \infty)$, where $k=1$,
2. For given neighbourhood V of $0 \in J$, there exists a neighbourhood U of $0 \in J$ such that $U-U \subset V$. Since $\lim _{i \rightarrow \infty} \sigma\left(X_{i}^{(k)}, X_{i}^{(k)} f, \mu\right)=\sigma^{\prime}(X, f, \mu)$, we have n_{k} such that $\sigma\left(X_{i}^{(k)}, X_{i}^{(k)} f, \mu\right)-\sigma^{\prime}(X, f, \mu) \in U$ for any $i \geqq n_{k}$. For n $=\max \left(n_{1}, n_{2}\right)$ and for any $l \geqq n$ and $m \geqq n$, we have $\sigma\left(X_{l}^{(1)}, X_{l}^{(1)} f, \mu\right)-\sigma\left(X_{m}^{(2)}\right.$, $\left.X_{m}^{(2)} f, \mu\right) \in V$ and this implies (iii). Now let us show that σ^{\prime} is the restriction of $\bar{\sigma}$. Let $\sigma^{\prime \prime}$ be the restriction of $\bar{\sigma}$ on Ω^{\prime}. Then the pair (Ω^{\prime}, $\sigma^{\prime \prime}$) satisfies the conditions and hence (ii) implies that $\sigma^{\prime}=\sigma^{\prime \prime}$. Finally let us show that (iv) Ω satisfies (a) and (a'). For $X_{i} \in \mathcal{S}, i=1,2, \cdots$, such that $X_{i} \uparrow X(i \rightarrow \infty)$, it follows that $\lim _{i \rightarrow \infty} \sigma\left(X_{i}, X_{i} f, \mu\right)=\lim _{i \rightarrow \infty} \sigma\left(X_{i}\right.$, $X f, \mu)=\sigma(X, X f, \mu)$ and this implies that Ω satisfies (a). That Ω satisfies (a^{\prime}) follows from Theorem 1. Thus the proposition is proved.
3. Lemmas. In this section we shall give some lemmas to prove the theorems in section 2.

Assumption 1. M is a set and \mathscr{M} is the ring of all subsets of M. A subring \mathcal{S} of \mathscr{M} is a pseudo- σ-ring.

Let Σ be the set of all maps ξ, defined on the set of all positive integers N and taking values in \mathcal{S}, such that $\xi(n) \subset \xi(n+1)$ for all $n \in N$. Put $\bar{\xi}=\bigcup_{n=1}^{\infty} \xi(n)$ for $\xi \in \Sigma$, and $\bar{\Theta}=\{\bar{\xi} \mid \xi \in \Sigma\}$ for $\Theta \subset \Sigma$. Then we have

Lemma 1. $\bar{\Sigma}=\left\{\bigcup_{n=1}^{\infty} X_{n} \mid X_{n} \in \mathcal{S}, n=1,2, \cdots\right\}$ and $\bar{\Sigma}$ is the sub- σ ring of \mathscr{M} generated by \mathcal{S}.

Corollary. S is an ideal of $\bar{\Sigma}$.
For $X \in \bar{\Sigma}$ and for $\xi_{i} \in \Sigma, i=0,1, \cdots, k$, let us define maps $X \xi_{0}, \xi_{0} \xi_{1}$ $\cdots \xi_{k}$ and $\xi_{0}+\xi_{1}+\cdots+\xi_{k}$ of N into \mathcal{S} by

1) $\left(X \xi_{0}\right)(n)=X\left(\xi_{0}(n)\right)$
2) $\left(\xi_{0} \xi_{1} \cdots \xi_{k}\right)(n)=\xi_{0}(n) \xi_{1}(n) \cdots \xi_{k}(n)$
3) $\left(\xi_{0}+\xi_{1}+\cdots+\xi_{k}\right)(n)=\xi_{0}(n)+\xi_{1}(n)+\cdots+\xi_{k}(n)$
for any $n \in N$, respectively.
Lemma 2. For $X \in \bar{\Sigma}$ and for $\xi_{i} \in \Sigma, i=0,1, \cdots, k$, we have
4) $X \xi_{0} \in \Sigma$ and $\bar{X} \bar{\xi}_{0}=X \bar{\xi}_{0}$
5) $\xi_{0} \xi_{1} \cdots \xi_{k} \in \Sigma$ and $\overline{\xi_{0} \xi_{1} \cdots \xi_{k}}=\bar{\xi}_{0} \bar{\xi}_{1} \cdots \bar{\xi}_{k}$
6) $\bar{\xi}_{i} \xi_{j}=0(i \neq j)$ implies that $\xi_{0}+\xi_{1}+\cdots+\xi_{k} \in \Sigma$ and that $\overline{\xi_{0}+\xi_{1}}$ $\overline{+\cdots+\xi_{k}}=\bar{\xi}_{0}+\bar{\xi}_{1}+\cdots+\bar{\xi}_{k}$.

Assumption 2. ($\mathcal{S}, \mathscr{F}, J$) is an abstract integral structure [1] and \mathcal{G} is an \mathcal{S}-invariant subgroup of \mathscr{F}.

Note that $(\mathcal{S}, \mathcal{G}, J)$ is also an abstract integral structure.
For each $f \in \mathscr{F}$, denote the sets $\{X \mid X \in \mathcal{S}, X f \in \mathcal{G}\}$ and $\{\xi \mid \xi \in \Sigma$, $\xi(n) f \in \mathcal{G}$ for any $n \in N\}$ by $\mathcal{R}(f)$ and $\Sigma(f)$, respectively. We can write $\Sigma(f)=\{\xi \mid \xi \in \Sigma, \xi(n) \in \mathscr{R}(f)$ for any $n \in N\}$.

Lemma 3. $\mathcal{R}(g)=\mathcal{S}$ and $\Sigma(g)=\Sigma$ for any $g \in \mathcal{G}$.
Lemma 4. For any $f \in \mathscr{F}, \mathcal{R}(f)$ is an ideal of $\bar{\Sigma}$ and is a pseudo-σ-ring.

Proof. 1) It immediately follows that $0 \in \mathcal{R}(f) \subset \mathcal{S} \subset \bar{\Sigma}$. 2) For
$X \in \mathcal{R}(f)$ and for $Y \in \bar{\Sigma}$, Corollary to Lemma 1 implies that $X Y \in \mathcal{S}$ and it holds that $(X Y) f=(X Y)(X f) \in \mathcal{S} \mathcal{G} \subset \mathcal{G}$. Hence, $X Y \in \mathcal{R}(f)$ for any $X \in \mathcal{R}(f)$ and $Y \in \bar{\Sigma}$. 3) For $X, Y \in \mathcal{R}(f)$ such that $X Y=0$, we have $X+Y \in \mathcal{S},(X+Y) f=X f+Y f \in \mathcal{G}$, and thus we have $X+Y \in \mathscr{R}(f)$. 1), 2), and 3) above imply that $\mathcal{R}(f)$ is an ideal of $\bar{\Sigma}$. That $\mathcal{R}(f)$ is a pseudo- σ-ring follows from the fact that $\bar{\Sigma}$ is a σ-ring.

Corollary. $\quad R(f)$ is an ideal of \mathcal{S} for any $f \in \mathscr{F}$.
Lemma 5. $\overline{\Sigma(f)}=\left\{\bigcup_{n=1}^{\infty} X_{n} \mid X_{n} \in \mathcal{R}(f), n=1,2, \cdots\right\}$ for any $f \in \mathscr{F}$.
Lemma 6. For any $f \in \mathscr{F}, \overline{\Sigma(f)}$ is an ideal of $\bar{\Sigma}$ and is a σ-ring.
Proof. This follows from 1), 2), and 3), below. 1) $0 \in \overline{\Sigma(f)} \subset \bar{\Sigma}$. 2) For $X \in \overline{\Sigma(f)}$ and $Y \in \bar{\Sigma}$, we have an element ξ of $\Sigma(f)$ such that $\bar{\xi}$ $=X$. That $\mathscr{R}(f)$ is an ideal of $\bar{\Sigma}$ implies that $(Y \xi)(n)=Y(\xi(n)) \in \mathcal{R}(f)$ for each n and thus we have $Y \xi \in \Sigma(f)$. Hence $Y X=Y \bar{\xi}=\overline{Y \xi} \in \overline{\Sigma(f)}$. 3) It holds that $\cup_{n=1}^{\infty} X_{n} \in \overline{\Sigma(f)}$ for $X_{n} \in \overline{\Sigma(f)}, n=1,2, \cdots$, which follows from Lemma 5.

Corollary 1. $\mathcal{R}(f)$ is an ideal of $\overline{\Sigma(f)}$ for any $f \in \mathscr{F}$.
Corollary 2. If $f \in \mathscr{F}, X \in \bar{\Sigma}, \xi \in \Sigma(f)$, and if $\eta \in \Sigma$, we have

1) $X \xi \in \Sigma(f)$
2) $\xi \eta \in \Sigma(f)$
3) $\overline{\xi \eta}=0$ and $\eta \in \Sigma(f)$ imply that $\xi+\eta \in \Sigma(f)$.

Proof. For each n, we have 1) $(X \xi)(n)=X(\xi(n)) \in \bar{\Sigma} \mathcal{R}(f) \subset \mathcal{R}(f)$, 2) $(\xi \eta)(n)=\xi(n) \eta(n) \in \mathscr{R}(f) \mathcal{S} \subset \mathcal{R}(f)$, and 3) $(\xi+\eta)(n)=\xi(n)+\eta(n) \in \mathscr{R}(f)$.

Lemma 7. $X Y \in \mathcal{R}(f)$ if and only if $X \in \mathscr{R}(Y f)$, for any $f \in \mathscr{F}$, $X \in \mathcal{S}$ and $Y \in \bar{\Sigma}$.

Corollary. $X \xi \in \Sigma(f)$ if and only if $\xi \in \Sigma(X f)$, for any $f \in \mathscr{F}, X \in \bar{\Sigma}$ and $\xi \in \Sigma$.

Lemma 8. If $f \in \mathcal{F}, \zeta \in \Sigma(f)$, and if $\bar{\zeta}=X Y$ for $X, Y \in \bar{\Sigma}$, then we have an element ξ of $\Sigma(Y f)$ such that $\bar{\xi}=X$ and $\zeta=Y \xi$.

Proof. Let η be an element of Σ such that $\bar{\eta}=X$. Put $\xi=\eta+Y \eta$ $+\zeta$. Then we have $\xi(n) \in \mathcal{S}$, which follows from the fact that \mathcal{S} is an ideal of $\bar{\Sigma}$, and we have $\xi(n)=(\eta(n)-Y) \cup \zeta(n) \subset \xi(n+1)$, for each n. This implies that $\xi \in \Sigma$. It follows that $(Y \xi)(n)=Y(\xi(n))=Y(\zeta(n))=\zeta(n)$ and this implies that $\zeta=Y \xi$. Since $\xi(n)(Y f)=((Y \xi)(n)) f=\zeta(n) f \in \mathcal{G}$, we have $\xi \in \Sigma(Y f)$. Finally we have $\bar{\xi}=\cup_{n=1}^{\infty} \xi(n)=\cup_{n=1}^{\infty}((\eta(n)-Y) \cup \zeta(n))$ $=\left(\cup_{n=1}^{\infty}(\eta(n)-Y)\right) \cup\left(\cup_{n=1}^{\infty} \zeta(n)\right)=\left(\cup_{n=1}^{\infty} \eta(n)-Y\right) \cup \bar{\zeta}=(\bar{\eta}-Y) \cup X Y$ $=(X-Y) \cup X Y=X$.

Now put $\tilde{\Omega}=\{(\bar{\xi}, f) \mid f \in \mathscr{F}, \xi \in \Sigma(f)\}$. Then we have
Lemma 9. $\overline{\Sigma(f)}=\{X \mid(X, f) \in \tilde{\Omega}\}$ for any $f \in \mathscr{F}$.
Lemma 10. If $f_{i} \in \mathscr{F}$ and if $\xi_{i} \in \Sigma\left(f_{i}\right), i=1,2, \cdots, k$, then $\xi_{1} \xi_{2}$ $\cdots \xi_{k} \in \bigcap_{i=1}^{k} \Sigma\left(f_{i}\right)$.

Proof. This follows from Lemma 2 and Corollary 2 to Lemma 6. Corollary 1. If $f_{i} \in \mathscr{F}, \xi_{i} \in \Sigma\left(f_{i}\right), i=1,2, \cdots, k$, and if $\bar{\xi}_{1}=\bar{\xi}_{2}=\cdots$
$=\bar{\xi}_{k}=X$, then there exists an element ξ of $\bigcap_{i=1}^{k} \Sigma\left(f_{i}\right)$ such that $\bar{\xi}=X$.
Corollary 2. If $\left(X, f_{i}\right) \in \tilde{\Omega}, i=1,2, \cdots, k$, then there exists an element ξ of $\bigcap_{i=1}^{k} \Sigma\left(f_{i}\right)$ such that $\bar{\xi}=X$.

Lemma 11. $(X Y, f) \in \tilde{\Omega}$ if and only if $(X, Y f) \in \tilde{\Omega}$, for any $X, Y \in \bar{\Sigma}$ and $f \in \mathscr{F}$.

Proof. Suppose that $(X Y, f) \in \tilde{\Omega}$. For $\zeta \in \Sigma(f)$ such that $\bar{\zeta}=X Y$, there exists $\xi \in \Sigma(Y f)$ such that $\bar{\xi}=X$ (Lemma 8), and this implies (X, $Y f) \in \tilde{\Omega}$. Conversely suppose that $(X, Y f) \in \tilde{\Omega}$. Then we have $\xi \in \Sigma(Y f)$ such that $\bar{\xi}=X$. Corollary to Lemma 7 implies that $Y \xi \in \Sigma(f)$. Since $\overline{Y \xi}=Y \bar{\xi}=X Y$, we have $(X Y, f) \in \tilde{\Omega}$.

Put $\widetilde{\mathcal{G}}(X)=\{f \mid(X, f) \in \tilde{\Omega}\}$ for each $X \in \bar{\Sigma}$. Then we have
Lemma 12. $\widetilde{\mathcal{G}}(X)$ is a subgroup of \mathcal{F} for any $X \in \bar{\Sigma}$.
Proof. It sufficies to show that $f-g \in \widetilde{G}(X)$ for $f, g \in \widetilde{G}(X)$. Corollary 2 to Lemma 10 implies that there is $\xi \in \Sigma(f) \cap \Sigma(g)$ such that $\bar{\xi}=X$. We have $\xi(n)(f-g)=\xi(n) f-\xi(n) g \in \mathcal{G}$ for any n and thus we have (X, $f-g)=(\bar{\xi}, f-g) \in \tilde{\Omega}$. Hence $f-g \in \widetilde{\mathcal{G}}(X)$.

References

[1] M. Takahashi: Integration with respect to the generalized measure. I, II. Proc. Japan Acad., 43, 178-185 (1967).
[2] -: Integration with respect to the generalized measure. III. Proc. Japan Acad., 44, 452-456 (1968).
[3] -: Integration with respect to the generalized measure. IV. Proc. Japan Acad., 44, 457-461 (1968).

