56. Remarks on the Eichler Cohomology of Kleinian Groups

By Hiroki SATO

Department of Mathematics, Shizuoka University (Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1971)

1. Let Γ be a finitely generated kleinian group, Ω its region of discontinuity, Λ its limit set and $\lambda(z) |dz|$ the Poincaré metric on Ω . We denote by Δ an arbitrary Γ -invariant union of components of Ω . In this note we assume that Δ/Γ is a finite union of compact Riemann surfaces, and consider relations between the Kra and the Ahlfors decompositions for $H^1(\Gamma, \Pi_{2g-2})$.

2. We fix an integer $q \ge 2$. Let Ξ be an Γ -module. A mapping $p: \Gamma \to \Xi$ is called Ξ -cocycle if $p_{AB} = p_A \cdot B + p_B$, $A, B \in \Gamma$. If $f \in \Xi$, its coboundary δf is the cocycle $A \to f \cdot A - f$, $A \in \Gamma$. The first cohomology space $H^1(\Gamma, \Xi)$ is the space of cocycles factored by the space of coboundaries. The Γ -modules used in this note are (1) Π_{2q-2} , the vector space of complex polynomials in one variable of degree at most 2q-2, with $v \cdot A(z) = v(Az)A'(z)^{1-q}, v \in \Pi_{2q-2}$ and $A \in \Gamma$ and (2) $H_r(\varDelta)(M_r(\varDelta))$ the vector space of holomorphic (meromorphic) functions on \varDelta , with $f \cdot A(z) = f(Az)A'(z)^{1-q}, f \in H_r(\varDelta)(M_r(\varDelta)), A \in \Gamma$, where r is an integer. We call $H_r(\varDelta, \Gamma)$ and $M_r(\varDelta, \Gamma)$, the spaces of holomorphic and meromorphic automorphic forms of weight (-2r) on \varDelta for Γ , respectively. Two meromorphic (holomorphic) Eichler integrals of order 1-q are identified if they differ an element of Π_{2q-2} . This identification space is denoted by $E_{1-q}(\varDelta, \Gamma)(E_{1-q}^0(\varDelta, \Gamma))$. If $a_1, a_2, \dots, a_{2q-1}$ are distinct points in \varDelta and $\phi \in H_q(\varDelta, \Gamma)$, then

$$F(z) = rac{(z-a_1)\cdots(z-a_{2q-1})}{2\pi i} \iint_{a} rac{\lambda^{2-2q}(\zeta)ar{\phi}(\zeta)d\zeta\wedge dar{\zeta}}{(\zeta-z)(\zeta-a_1)\cdots(\zeta-a_{2q-1})}$$

is a potential for ϕ (Bers [2]). We denote by $\operatorname{Pot}(\phi)$ a potential for ϕ . A mapping $\alpha : E_{1-q}^{0}(\varDelta, \Gamma) \to H^{1}(\Gamma, \Pi_{2q-2})$ is defined as $\alpha_{A}(f) = f \cdot A - f$ for $f \in E_{1-q}^{0}(\varDelta, \Gamma)$ and $A \in \Gamma$. A mapping $\beta^{*} : H_{q}(\varDelta, \Gamma) \to H^{1}(\Gamma, \Pi_{2q-2})$ is defined by setting $\beta_{A}^{*}(\phi) = \operatorname{Pot}(\phi) \cdot A - \operatorname{Pot}(\phi)$ for $\phi \in H_{q}(\varDelta, \Gamma)$.

Theorem A (The Kra decomposition). Every $p \in H^1(\Gamma, \Pi_{2q-2})$ can be written uniquely as $p = \alpha(f) + \beta^*(\phi)$ with $f \in E^0_{1-q}(\Delta, \Gamma)$ and $\phi \in H_q(\Delta, \Gamma)$.

3. For $f \in E_{1-q}(\Delta, \Gamma)$, the polynomials $f(Az)A'(z)^{1-q} - f(z)$ are the periods of f, and we write $f(Az)A'(z)^{1-q} - f(z) = pd_A f(z)$. The periods determine a canonical isomorphism $pd: E_{1-q}(\Delta, \Gamma) \rightarrow H^1(\Gamma, \Pi_{2q-2})$. Thus pdf, $f \in E_{1-q}(\Delta, \Gamma)$, is a cohomology class and $pdE_{1-q}(\Delta, \Gamma)$ is the image

of $E_{1-q}(\varDelta, \Gamma)$ under the period mapping.

Theorem B (The Ahlfors theorem).

 $H^{1}(\Gamma,\Pi_{2q-2})=pdE_{1-q}(\varDelta,\Gamma).$

Let $\Delta/\Gamma = S_1 \cup \cdots \cup S_n$, S_i being compact Riemann surfaces. Choose a point $\zeta_j \in \Pi^{-1}(S_j)$ which is not an elliptic fixed point nor a q-Weierstrass point, where $\Pi: \Delta \to \Delta/\Gamma$ is the natural projection mapping. Let $d_j = \dim (H_q(\Delta, \Gamma) | \Pi^{-1}(S_j))$. Set $g(z,\zeta) = \sum_{A \in \Gamma} (z - A\zeta^{-1}A'(\zeta)^q, z \in \Omega, \zeta \in \Omega)$. Here we may assume without any loss of generality that $\infty \notin \Lambda$, and ∞ is not elliptic fixed point. Define $g_{\nu}(z,\zeta) = \partial^{\nu-1}g/\partial\zeta^{\nu-1}$, and set $G_{\nu}(z)$ $= g_{\nu}(z,\zeta_j), \ \nu = 1, 2, \cdots, d$ (Ahlfors [1] and Kra [7]). We denote by $\widetilde{E}_{1-q}(\Delta, \Gamma)$ the space spaned by $G_{\nu}(z), \ \nu = 1, \cdots, d$; $j = 1, 2, \cdots, n$. Then Theorem B implies

Theorem B' (cf. Kra [7]).

 $H^{1}(\Gamma, \Pi_{2q-2}) = pdE^{0}_{1-q}(\varDelta, \Gamma) + pd\tilde{E}_{1-q}(\varDelta, \Gamma).$

Let $g \in \tilde{E}_{1-q}(\Delta, \Gamma)$. We set $\tilde{\beta}_A^*(g) = g(Az)A'(z)^{1-q} - g(z)$ for all $A \in \Gamma$. 4. If Γ is a fuchsian group on the upper half plane U of the first kind without parabolic elements, a mapping $\delta^* : H_q(U, \Gamma) \to H^1(\Gamma, \Pi_{2q-2})$ is defined as

$$\delta^*_A(\phi) = rac{1}{(2q-2)\,!} \int_{\scriptscriptstyle A^{-1}z_0}^{z_0} (z-\zeta)^{z_q-2} \phi(\zeta) d\zeta, \phi \in H_q(U, \Gamma) \quad ext{and} \quad A \in \Gamma,$$

where $z_0 \in U$. Then by a similar method as Gunning [5] we have

Theorem 1. (1) Let Γ be a finitely generated kleinian group with Δ/Γ is a finite union of compact Riemann surfaces. We take $p \in H^1(\Gamma, \Pi_{2q-2})$. Let $p = \alpha(f_1) + \beta^*(\phi), f \in \mathbf{E}_{1-q}^0(\Delta, \Gamma)$ and $\phi \in \mathbf{H}_q(\Delta, \Gamma)$, and $p = \alpha(f_2) + \tilde{\beta}^*(g), f \in \mathbf{E}_{1-q}^0(\Delta, \Gamma)$ and $g \in \tilde{\mathbf{E}}_{1-q}(\Delta, \Gamma)$ be the Kra and the Ahlfors decompositions, respectively, then

$$(\psi, \phi) = 2\pi i \operatorname{Res} (g\psi) \qquad for \ any \ \psi \in H_q(\varDelta, \varGamma),$$

where we define (ψ, ϕ) as $(\psi, \phi) = 1/2\pi i \iint_{d/\Gamma} \lambda(\zeta)^{2-2q} \psi(\zeta) \overline{\phi(\zeta)} d\zeta \wedge d\overline{\zeta}.$

(2) In particular when Γ is a fuchsian group of the first kind without parabolic elements, then

 $\alpha_{A}(f) = (2q-2)! \,\delta_{A}^{*}(D^{2q-1}f) \qquad for \ f \in E_{1-a}^{0}(\mathcal{A}, \Gamma) \ and \ A \in \Gamma.$

Proof. (1) $(f_1 - f_2)(Az)A'(z)^{1-q} - (f_1 - f_2)(z) + \operatorname{Pot}(\phi)(Az)A'(z)^{1-q} - \operatorname{Pot}(\phi)(z) = g(Az)A'(z)^{1-q} - g(z)$ for all $A \in \Gamma$, so that $h(Az)A'(z)^{1-q} = h(z)$ for all $A \in \Gamma$, where we set $f_1 - f_2 = f \in E_{1-q}^0(\Delta, \Gamma)$ and $h = g - f - \operatorname{Pot}(\phi)$. By definition, for any $\psi \in H_q(\Delta, \Gamma)$,

$$(\psi, \phi) = \iint_{\omega} \lambda^{2-2q}(z)\psi(z)\overline{\phi(z)}dz \wedge dar{z} = \iint_{\omega} \psi(z)dz \wedge ar{\partial}(\operatorname{Pot}(\phi)(z)),$$

which does not depend on the choice of ω , where ω is a fundamental region in Δ for Γ , that is, $\omega = \bigcup_{i=1}^{n} (\omega_i \cap \Delta), \omega_i$ is a fundamental region in Δ_i for Γ_i , since $\Delta/\Gamma = \bigcup_{i=1}^{n} \Delta_i/\Gamma_i$ (Bers [2]). Applying Stokes' theorem

240

we have

$$\begin{aligned} (\psi, \phi) &= \int_{\partial \omega} \operatorname{Pot} (\phi)(z) \psi(z) dz \\ &= \int_{\partial \omega} g(z) \psi(z) dz - \int_{\partial \omega} h(z) \psi(z) dz - \int_{\partial \omega} f(z) \psi(z) dz \\ &= 2\pi i \operatorname{Res} (g\psi), \end{aligned}$$

because arcs of $\partial \omega$ are identified in pairs by elements of Γ and in view of $h\psi dz$ is Γ -invariant, so that $\int_{\partial \omega} h\psi dz = 0$, and $f\psi$ is holomorphic function in ω , so that Res $(f\psi)=0$.

(2)
$$\delta^{*}(D^{2q-1}f) = \frac{1}{(2q-2)!} \int_{A^{-1}z_{0}}^{z_{0}} (z-\zeta)^{2q-2} D^{2q-1}f(\zeta)d\zeta$$
$$= \frac{1}{(2q-2)!} \int_{z_{0}}^{Az} (Az-\zeta)^{2q-2} D^{2q-1}f(\zeta)d\zeta \times A'(z)^{1-q}$$
$$-\frac{1}{(2q-2)!} \int_{z_{0}}^{z} (z-\zeta)^{2q-2} D^{2q-1}f(\zeta)d\zeta.$$

Set $h(z) = 1/(2q-2)! \int_{z_0}^{z} (z-\zeta)^{2q-2} D^{2q-1} f(\zeta) d\zeta$. Then $h \in E_{1-q}^0(U, \Gamma)$. In fact, first, $h(Az)A'(z)^{1-q} - h(z) = 1/(2q-2)! \int_{A^{-1}z_0}^{z_0} (z-\zeta)^{2q-2} D^{2q-1} f(\zeta) d\zeta$ $= v(z), v \in \Pi_{2q-2}$. Secondly, setting $D^{2q-1}h = \phi$, we have by the Cauchy formula

$$\begin{split} \phi(Az)A'(z)^{q} &= (2q-1)!/2\pi i \int_{\zeta \in \mathcal{C}_{Az}} h(\zeta)/(\zeta - Az)^{2q} d\zeta \times A'(z)^{q} \\ &= \frac{(2q-1)!}{2\pi i} \int_{w \in \mathcal{C}_{z}} \frac{h(Az)}{(Aw - Az)^{2q}} dAw \times A'(z)^{q} \\ &= \frac{(2q-1)!}{2\pi i} \left(\int_{w \in \mathcal{C}_{z}} \frac{h(w)dw}{(w-z)^{2q}} + \int_{w \in \mathcal{C}_{z}} \frac{v(w)}{(w-z)^{2q}} dw \right) \end{split}$$

where C_z and C_{Az} are small circles about the points z and Az, respectively. Since $v \in \Pi_{2q-2}$, $\int_{w \in C_z} v(w)/(w-z)^{2q}dw = 0$ and hence $\phi(Az)A'(z)^q = \frac{(2q-1)!}{2\pi i} \int_{w \in C_z} \frac{h(w)}{(w-z)^{2q}} dw = \phi(z).$

On the other hand we see easily $D^{2q-1}h(z) = D^{2q-1}f(z)$, and hence $h = f + v_1, v_1 \in \Pi_{2q-2}$. Thus we have

$$(2q-2)! \delta_{\mathcal{A}}^{*}(D^{2q-1}f)(z) = h(Az)A'(z)^{1-q} - h(z)$$

= $f(Az)A'(z)^{1-q} - f(z) + v_1(Az)A'(z)^{1-q} - v_1(z) = \alpha_A(f)(z)$

for all $A \in \Gamma$. Our proof is now complete.

Remark. It is easy to see by modifying the above proof that Theorem 1 (2) is satisfied in the case of which Γ is a finitely generated kleinian group without parabolic elements with an simply connected invariant component Δ .

5. We denote by $H^1_0(\Gamma, \Pi_{2q-2})$ the subspace of $H^1(\Gamma, \Pi_{2q-2})$ each element p of which has decompositions $p = \alpha(f) + \beta^*(\phi) = \alpha(f) + \tilde{\beta}^*(g)$, $f \in E^0_{1-q}(\varDelta, \Gamma), \phi \in H_q(\varDelta, \Gamma)$ and $g \in \tilde{E}_{1-q}(\varDelta, \Gamma)$.

No. 3]

Theorem 2. If Γ is a kleinian group with an invariant region Δ and Δ/Γ is compact, then

 $\dim H_{q}(\varDelta, \Gamma) \leq \dim H^{1}_{0}(\Gamma, \Pi_{2q-2}) \leq 2 \dim H_{q}(\varDelta, \Gamma).$

The first inequality becomes equality when Γ is a Schottky group, and the second one is attained in the case that Γ is a fuchsian group of the first kind without parabolic elements.

Lemma 1 (Bers [2]). Let Γ be a fuchsian group of the first kind without parabolic elements. Then for any $p \in \alpha(E_{1-q}^0(U, \Gamma))$, there exists a $\phi \in H_q(L, \Gamma)$ such that $\beta^*(\phi) = p$, and for any $p \in \beta^*(H_q(U, \Gamma))$, there exists an $f \in E_{1-q}^0(L, \Gamma)$ such that $\alpha(f) = p$, where L is the lower half plane.

The proof of Theorem 2. The second inequality is obvious from dim $H(\Gamma, \Pi_{2q-2}) \leq 2 \dim H_q(\Delta, \Gamma)$ (see Kra [6]).

Let $d = \dim H_q(\Delta, \Gamma)$ and $e = \dim E_{1-q}^o(\Delta, \Gamma)$. First we remark that $d \ge e$ (Kra [6]). Let $\phi_1, \phi_2, \dots, \phi_d$ be a basis of $H_q(\Delta, \Gamma)$ and f_1, f_2, \dots, f_e be that of $E_{1-q}^o(\Delta, \Gamma)$. Then $\beta^*(\phi_1), \beta^*(\phi_2), \dots, \beta^*(\phi_d)$ is a basis of $\beta^*(H_q(\Delta, \Gamma))$ and $\alpha(f_1), \alpha(f_2), \dots, \alpha(f_e)$, is that of $\alpha(E_{1-q}^o(\Delta, \Gamma))$. Hence we have

where
$$a_{ij} \in C$$
 $(i=1,2,\cdots,d; j=1,2,\cdots,e)$.

 $\mathbf{Rank}egin{pmatrix} a_{11}&a_{12}\cdots a_{1e}\ a_{21}&a_{22}\cdots a_{2e}\ \cdots & \cdots & \cdots & a_{d_1}\ a_{d_1}&a_{d_2}\cdots a_{d_e} \end{pmatrix} \leq e$

Therefore there are linear independent $\phi'_1, \phi'_2, \dots, \phi'_{d-e}$ and $g'_1, g'_2, \dots, g'_{d-e}$ with $\phi'_i \in H_q(\mathcal{A}, \Gamma)$ and $g'_i \in \tilde{E}_{1-q}(\mathcal{A}, \Gamma)$ $(i=1, 2, \dots, d-e)$ such that $\beta^*(\phi'_i) = \tilde{\beta}^*(g'_i)$. Since $\alpha(E^0_{1-q}(\mathcal{A}, \Gamma)) \subset H'_0(\Gamma, \Pi_{2q-2})$, we have dim $H^1_0(\Gamma, \Pi_{2q-2}) \ge \dim \alpha(E^0_{1-q}(\mathcal{A}, \Gamma)) + d - e = e + d - e = d$.

If Γ is a Schottky group, then $\alpha(E_{1-q}^{0}(\Delta,\Gamma))=0$ and $\tilde{\beta}^{*}(\tilde{E}_{1-q}(\Delta,\Gamma))$ = $H^{1}(\Gamma, \Pi_{2q-2})=\beta^{*}(H_{q}(\Delta,\Gamma))$, so that dim $H_{0}^{1}(\Gamma, \Pi_{2q-2})=\dim H^{1}(\Gamma, \Pi_{2q-2})$ =dim $H_{q}(\Delta,\Gamma)$. Let Γ be a fuchsian group of the first kind without parabolic elements. First we show that for any $p \in \tilde{\beta}^{*}(E_{1-q}(U,\Gamma))$ there exists a function $f \in E_{1-q}^{0}(U,\Gamma)$ such that $\alpha(f)=p$. Set $p=\tilde{\beta}^{*}(g)$. From the construction of the functions $g_{i}, i=1,2,\cdots,d$, we see that the function g is holomorphic on L and satisfies $g(Az)A'(z)^{1-q}-g(z)=p_{A}(z), z \in L$ for all $A \in \Gamma$. Thus $g \in E_{1-q}^{0}(L,\Gamma)$. Hence $p=\alpha_{L}(g)$, where α_{L} denote an operator of α in L. From Lemma 1 there exists $\phi \in H_{q}(U,\Gamma)$ such that $p=\alpha_{L}(g)=\beta_{U}^{*}(\phi)$, which shows $\tilde{\beta}^{*}(\tilde{E}_{1-q}(U,\Gamma))\subset \beta^{*}(H_{q}(U,\Gamma))$ where β_U^* means an operator of β^* in U. As we saw in § 4, dim $\alpha(E_{1-q}^0(U,\Gamma))$ =dim $H_q(U,\Gamma)$, but the latter is equal to dim $\beta^*(H_q(U,\Gamma))$, so that $\tilde{\beta}^*(\tilde{E}_{1-q}(U,\Gamma)) = \beta^*(H_q(U,\Gamma))$. If $p = \alpha(f_1) + \beta^*(\phi) = \alpha(f_2) + \tilde{\beta}^*(g)$ with $f_1, f_2 \in E_{1-q}^0(U,\Gamma), \phi \in H_q(U,\Gamma)$ and $g \in \tilde{E}_{1-q}(U,\Gamma)$, then $\alpha(f_1) = \alpha(f_2)$, that is, $f_1 = f_2$ and $\beta^*(\phi) = \tilde{\beta}^*(g)$. Thus $H_0^1(\Gamma, \Pi_{2q-2}) = H^1(\Gamma, \Pi_{2q-2})$. In conclusion, from dim $H^1(\Gamma, \Pi_{2q-2}) = 2$ dim $H_q(U,\Gamma)$ (see Kra [6]) we have dim $H_0^1(\Gamma, \Pi_{2q-2}) = 2$ dim $H_q(U,\Gamma)$. Our proof is now complete.

From Theorem 1 (2) and Theorem 2 we have the following

Corollary 1. Let Γ be a fuchsian group of the first kind without parabolic elements. If $p \in H^1(\Gamma, \Pi_{2q-2})$ is represented as $p = \alpha(f_1) + \beta^*(\phi)$ with $f_1 \in E_{1-q}^0(U, \Gamma)$ and $\phi \in E_q(U, \Gamma)$, and $p = (2q-2)! \delta^*(D^{2q-1}f_2) + \tilde{\beta}^*(g)$ with $f_2 \in E_{1-q}^0(U, \Gamma)$ and $g \in \tilde{E}_{1-q}(U, \Gamma)$, then $f_1 = f_2$ and $\beta^*(H_q(U, \Gamma))$ $= \tilde{\beta}^*(\tilde{E}_{1-q}(U, \Gamma)).$

The following corollary is obtained by the method of Kra [6] and Corollary 1 of Theorem 2.

Corollary 2. Let Γ be a fuchsian group of the first kind without parabolic elements. If both holomorphic part and meromorphic part of an Eichler integral f have real periods for all elements in Γ then pdf=0, that is, $f_1=f+v$, $f_1 \in M_q(U,\Gamma)$ and $v \in \Pi_{2q-2}$. Here pdf is real means that for every $A \in \Gamma$, the all coefficients of pdf are real.

References

- L. V. Ahlfors: The structure of a finitely generated Kleinian group. Acta Math., 122, 1-17 (1969).
- [2] L. Bers: Inequalities for finitely generated Kleinian groups. J. Anal. Math., 18, 23-41 (1967).
- [3] M. Eichler: Eine Verallgemeinerung der Abelschen Integrale. Math. Z., 67, 267-298 (1957).
- [4] R. C. Gunning: The Eichler cohomology groups and automorphic forms. Trans. Amer. Math. Soc., 100, 44-62 (1961).
- [5] ——: Lectures on Riemann Surfaces. Princeton Mathematical Notes, Princeton Univ. Press, Princeton (1966).
- [6] I. Kra: On cohomology of kleinian groups. Ann. of Math., 89, 533-556 (1969).
- [7] ——: On cohomology of kleinian groups. II. Ann. of Math., 90, 576-590 (1969).
- [8] B. Maskit: On boundaries of Teichmüller spaces and on kleinian groups. II. Ann. of Math., 91, 607-639 (1970).