110. An Analogue of the Paley-Wiener Theorem for the Heisenberg Group

By Keisaku Kumahara
Department of Applied Mathematics, Osaka University
(Comm. by Kinjirô Kunugı, M. J. A., May 12, 1971)

1. Introduction. Let \boldsymbol{R} (resp \boldsymbol{C}) be the real (resp. complex) number field as usual. Let G be the n-th Heisenberg group, i.e. the group of all real matrices of the form

$$
\left(\begin{array}{ccc}
1 & a & c \tag{1.1}\\
0 & I_{n} & b \\
0 & 0 & 1
\end{array}\right)
$$

where $a=\left(a_{1}, \cdots, a_{n}\right) \in \boldsymbol{R}^{n}, b={ }^{t}\left(b_{1}, \cdots, b_{n}\right) \in \boldsymbol{R}^{n}, c \in \boldsymbol{R}$ and I_{n} is the identity matrix of n-th order. Let H be the abelian normal subgroup consisting of the elements of the form (1.1) with $\alpha=0$. For any real η we denote by χ_{n} the unitary character of H defined by $\chi_{n}:\left(\begin{array}{ccc}1 & 0 & c \\ 0 & I_{n} & b \\ 0 & 0 & 1\end{array}\right)$ $\rightarrow e^{2 \pi i \eta c}$. Let U^{n} be the unitary representation of G induced by χ_{n}. Then the Plancherel theorem can be proved by means of $U^{\eta}(\eta \in \boldsymbol{R})$ (see e.g. [4]). However, as we have seen in the case of euclidean motion group ([2]), in order to prove an analogue of the Paley-Wiener theorem we have to consider the representations which have more parameters.

Let \hat{H} be the dual group of H. In this paper we consider the Fourier transform defined on $\hat{H} \cong \boldsymbol{R}^{n+1}$.

Let $C_{c}^{\infty}(G)$ be the set of all infinitely differentiable functions on G with compact support. For any $\xi \in \boldsymbol{R}^{n}$ and $\eta \in \boldsymbol{R}$ we denote by $U^{\xi, \eta}$ the unitary representation of G induced by the unitary character $\chi_{\xi, \eta}$ of $H: \chi_{\xi, \eta}\left(\begin{array}{ccc}1 & 0 & c \\ 0 & I_{n} & b \\ 0 & 0 & 1\end{array}\right)=e^{2 \pi i\langle\xi, b\rangle+2 \pi i n c}$. We define the (operator valued) Fourier transform T_{f} of $f \in C_{c}^{\infty}(G)$ by

$$
T_{f}(\xi, \eta)=\int_{G} f(g) U_{g}^{\xi, \eta} d g
$$

where $d g$ is the Haar measure on G. Then $T_{f}(\xi, \eta)$ is an integral operator on $L_{2}\left(\boldsymbol{R}^{n}\right)$ (§2). Denote by $K_{f}(\xi, \eta ; x, y)\left(x, y \in \boldsymbol{R}^{n}\right)$ be the kernel function of $T_{f}(\xi, \eta)$. We shall call K_{f} the scalar Fourier transform of f.

The purpose of this paper is to determine the image of $C_{c}^{\infty}(G)$ by the scalar Fourier transform (analogue of the Paley-Wiener theorem).
I. M. Gel'fand has investigated the scalar Fourier transform on the Lorentz group and proved the Paley-Wiener theorem for the class of rapidly decreasing functions [1].

The author would like to express his thanks to Prof. K. Okamoto for his helpful comments.
2. The scalar Fourier transform. Let $L_{2}\left(\boldsymbol{R}^{n}\right)$ be the Hilbert space of all square integrable functions on \boldsymbol{R}^{n}. Let \langle,$\rangle be the inner product$ of the n-dimensional euclidean space \boldsymbol{R}^{n}. Let us realize the unitary representation $U^{\xi, \eta}\left(\xi \in \boldsymbol{R}^{n}, \eta \in \boldsymbol{R}\right)$ on $L_{2}\left(\boldsymbol{R}^{n}\right)$. For an element $g \in G$ of the form (1.1), we define $U_{g}^{\xi, \eta}$ by the formula

$$
\left(U_{\boldsymbol{g}}^{\xi, \eta} F\right)(x)=e^{2 \pi i\langle\xi, b\rangle+2 \pi i \eta(c-\langle x, b\rangle\rangle} F(x-a),
$$

($\left.F \in L_{2}\left(\boldsymbol{R}^{n}\right), x \in \boldsymbol{R}^{n}\right)$. Then $U^{\varepsilon, \eta}$ is a unitary representation of G.
Lemma 1. If $\eta \neq 0, U^{0, \eta}$ is an irreducible unitary representation of G.

For the proof of this lemma, see e.g. [4].
Let R_{z} be the right translation of $L_{2}\left(\boldsymbol{R}^{n}\right)$ by $z \in \boldsymbol{R}^{n}:\left(R_{z} F\right)(x)$ $=F(x+z)$. Then it can be shown that if $\eta \neq 0, R_{(1 / \eta)\left(\xi-\xi^{\prime}\right)} U_{g}^{\xi, \eta}$ $=U^{\xi^{\prime}, \eta} R_{(1 / n)\left(\xi-\xi^{\prime}\right)}$ for every $g \in G$ and for every $\zeta, \xi^{\prime} \in R^{n}$. Thus by Lemma 1 we have the following

Lemma 2. If $\eta \neq 0, U^{\xi, \eta}$ is irreducible and $U^{\xi, \eta}$ is equivalent to $U^{\xi^{\prime}, \eta}$ by $R_{(1 / \eta)\left(\xi-\xi^{\prime}\right)}$ for any $\xi, \xi^{\prime} \in \boldsymbol{R}^{n}$.

We normalize the Haar measure $d g$ on G such that

$$
d g=d a_{1} \cdots d a_{n} d b_{1} \cdots d b_{n} d c \quad \text { for } g=\left(\begin{array}{ccc}
1 & a & c \\
0 & I_{n} & b \\
0 & 0 & 1
\end{array}\right)
$$

Then we have

$$
T_{f}(\xi, \eta) F(x)=\int_{\boldsymbol{R}^{n}} K_{f}(\xi, \eta ; x, y) F(y) d y, \quad\left(F \in L_{2}\left(\boldsymbol{R}^{n}\right)\right)
$$

where $d y=d y_{1} \cdots d y_{n}$ and

$$
K_{f}(\xi, \eta ; x, y)=\int_{R^{n+1}} f\left(\begin{array}{ccc}
1 & x-y & c+\langle x, b\rangle \tag{2.1}\\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) e^{2 \pi i\langle\xi, b\rangle+\eta c)} d b d c
$$

Let \mathfrak{F} be the set of all infinitely differentiable functions $\Phi(x, y)$ on $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$ such that $\Phi_{0}(y)$, which we define by $\Phi_{0}(y)=\Phi(0, y)$, are functions of $y \in \boldsymbol{R}^{n}$ with compact support. For any $r \geqq 0$, put $\mathfrak{F}_{r}=\{\Phi \in \mathfrak{F}$; $\left.\operatorname{supp}\left(\Phi_{0}\right) \subset\left\{y \in \boldsymbol{R}^{n} ;\left|y_{j}\right| \leqq r, j=1, \cdots, n\right\}\right\}$. And for any $r \geqq 0$ we denote by B_{r} the set of all elements $g=\left(\begin{array}{ccc}1 & a & c \\ 0 & I_{n} & b \\ 0 & 0 & 1\end{array}\right) \in G$ such that $\left|a_{j}\right| \leqq r,\left|b_{j}\right|$ $\leqq r(j=1, \cdots, n)$ and $|c| \leqq r$. Then we have the following

Lemma 3. For any $\xi \in \boldsymbol{R}^{n}$ and $\eta \in \boldsymbol{R}, K_{f}(\xi, \eta ; x, y) \in \mathfrak{F}_{r}$ as a function of $x, y \in \boldsymbol{R}^{n}$, whenever $f \in C_{c}^{\infty}(G)$ and $\operatorname{supp}(f) \subset B_{r}$.

By this lemma we can define a \mathfrak{F}-valued function K_{f} on $\hat{H} \cong \boldsymbol{R}^{n+1}$ by

$$
K_{f}[\xi, \eta](x, y)=K_{f}(\xi, \eta ; x, y) .
$$

We shall call K_{f} the scalar Fourier transform of f.
For any $z \in \boldsymbol{R}^{n}$, we define an operator L_{z} on \mathfrak{F} by $\left(L_{z} \Phi\right)(x, y)$ $=\Phi(x-y, y-z)$.

Lemma 4. Suppose that $f \in C_{c}^{\infty}(G)$. Then we have
(i) if $\eta \neq 0, K_{f}[\xi, \eta]=L_{(1 / \eta)\left(\xi-\xi^{\prime}\right)} K_{f}\left[\xi^{\prime}, \eta\right]$ for every $\xi, \xi^{\prime} \in \boldsymbol{R}^{n}$,
(ii) $K_{f}[\xi, 0]=L_{z} K_{f}[\xi, 0]$ for every $z, \xi \in \boldsymbol{R}^{n}$.

From Lemma 2 we can prove (i). The statement (ii) is an immediate consequence of (2.1).
3. The analogue of the Paley-Wiener theorem. Let K be a \mathfrak{F}^{-} valued function on $\hat{H}^{c} \cong \boldsymbol{C}^{n+1}$. We shall call that K is entire holomorphic if $K[\zeta, \omega](x, y)$ is an entire holomorphic function of $(\zeta, \omega) \in \boldsymbol{C}^{n+1}$ for every $x, y \in \boldsymbol{R}^{n}$. For any polynomial $q\left(y_{1}, \cdots, y_{n}\right)$ on \boldsymbol{R}^{n} we denote $q\left(D_{y}\right)=q\left(\partial / \partial y_{1}, \cdots, \partial / \partial y_{n}\right)$.
 Fourier transform of $f \in C_{c}^{\infty}(G)$ such that $\operatorname{supp}(f) \subset B_{r}$ if and only if it satisfies the following conditions:
(I) $K[\xi, \eta] \in \mathscr{F}_{r}$ for any $\xi \in \boldsymbol{R}^{n}, \eta \in \boldsymbol{R}$;
(II) (i) If $\eta \neq 0, K[\xi, \eta]=L_{(1 / n) \xi} K[0, \eta]$ for any $\xi \in \boldsymbol{R}^{n}$,
(ii) $K[\xi, 0]=L_{z} K[\xi, 0]$ for any $\xi, z \in \boldsymbol{R}^{n}$;
(III) K can be extended to an entire holomorphic function on \hat{H}^{c};
(IV) For any polynomial function p on \hat{H}^{c} and for any polynomial q on \boldsymbol{R}^{n}, there exists a constant $C_{p, q}$ such that

$$
\left|p(\zeta, \omega) q\left(D_{y}\right) K[\zeta, \omega](0, y)\right| \leqq C_{p, q} \exp 2 \pi r\left(\sum_{j=1}^{n}\left|\operatorname{Im} \zeta_{j}\right|+|\operatorname{Im} \omega|\right)
$$

for every $\zeta \in \boldsymbol{C}^{n}$ and $\omega \in \boldsymbol{C}$.
The necessity of the theorem follows from the facts mentioned in § 2.

Let us assume that K is an arbitrary $\mathscr{\mathscr { }}$-valued function on \hat{H} satisfying the conditions (I)-(IV) in the theorem. Define a function f on G by

$$
f\left(\begin{array}{ccc}
1 & a & c \\
0 & I_{n} & b \\
0 & 0 & 1
\end{array}\right)=\int_{\boldsymbol{R}^{n+1}} K[\xi, \eta](0,-a) e^{-2 \pi i\langle\xi, b\rangle-2 \pi i \eta c} d \xi d \eta
$$

where $d \xi=d \xi_{1} \cdots d \xi_{n}$.
Making use of the condition (I), and the classical Paley-Wiener theorem ([3]), it can be shown that $\operatorname{supp}(f) \subset B_{r}$.

The differentiability of f follows from (IV) and the Lebesgue's theorem.

Finally we have to check that $K_{f}=K$ which can be shown using the functional equations (II).

References

[1] I. M. Gel'fand: On the structure of the ring of rapidly decreasing functions on a Lie group (in Russian). Doklady Akad. Nauk S. S. S. R., 124, 19 (1959).
[2] K. Kumahara and K. Okamoto: An analogue of the Paley-Wiener theorem for the euclidean motion group (to appear).
[3] R. Paley and N. Wiener: Fourier Transforms in the Complex Domain. Amer. Math. Soc. Colloquium Publ. New York (1934).
[4] L. Pukanszky: Leçons sur les représentations des groupes. Dunod, Paris (1967).

