110. An Analogue of the Paley-Wiener Theorem for the Heisenberg Group

By Keisaku KUMAHARA Department of Applied Mathematics, Osaka University

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1971)

1. Introduction. Let $R(\operatorname{resp} C)$ be the real (resp. complex) number field as usual. Let G be the *n*-th Heisenberg group, i.e. the group of all real matrices of the form

$$\begin{pmatrix} 1 & a & c \\ 0 & I_n & b \\ 0 & 0 & 1 \end{pmatrix}$$
 (1.1)

where $a = (a_1, \dots, a_n) \in \mathbb{R}^n$, $b = {}^t(b_1, \dots, b_n) \in \mathbb{R}^n$, $c \in \mathbb{R}$ and I_n is the identity matrix of *n*-th order. Let *H* be the abelian normal subgroup consisting of the elements of the form (1.1) with a=0. For any real η we

denote by χ_{η} the unitary character of H defined by $\chi_{\eta} : \begin{pmatrix} 1 & 0 & c \\ 0 & I_n & b \\ 0 & 0 & 1 \end{pmatrix}$

 $\rightarrow e^{2\pi i \eta c}$. Let U^{η} be the unitary representation of G induced by χ_{η} . Then the Plancherel theorem can be proved by means of $U^{\eta}(\eta \in \mathbb{R})$ (see e.g. [4]). However, as we have seen in the case of euclidean motion group ([2]), in order to prove an analogue of the Paley-Wiener theorem we have to consider the representations which have more parameters.

Let \hat{H} be the dual group of H. In this paper we consider the Fourier transform defined on $\hat{H} \cong \mathbb{R}^{n+1}$.

Let $C_{\circ}^{\infty}(G)$ be the set of all infinitely differentiable functions on Gwith compact support. For any $\hat{\xi} \in \mathbf{R}^n$ and $\eta \in \mathbf{R}$ we denote by $U^{\xi,\eta}$ the unitary representation of G induced by the unitary character $\chi_{\xi,\eta}$ of

 $H: \chi_{\varepsilon,\eta} \begin{pmatrix} 1 & 0 & c \\ 0 & I_n & b \\ 0 & 0 & 1 \end{pmatrix} = e^{2\pi i \langle \varepsilon, b \rangle + 2\pi i \eta c}.$ We define the (operator valued) Fourier

transform T_f of $f \in C_c^{\infty}(G)$ by

$$T_f(\xi,\eta) = \int_G f(g) U_g^{\xi,\eta} dg,$$

where dg is the Haar measure on G. Then $T_f(\xi, \eta)$ is an integral operator on $L_2(\mathbb{R}^n)$ (§ 2). Denote by $K_f(\xi, \eta; x, y)$ $(x, y \in \mathbb{R}^n)$ be the kernel function of $T_f(\xi, \eta)$. We shall call K_f the scalar Fourier transform of f.

The purpose of this paper is to determine the image of $C^{\infty}_{c}(G)$ by the scalar Fourier transform (analogue of the Paley-Wiener theorem).

I. M. Gel'fand has investigated the scalar Fourier transform on the Lorentz group and proved the Paley-Wiener theorem for the class of rapidly decreasing functions [1].

The author would like to express his thanks to Prof. K. Okamoto for his helpful comments.

2. The scalar Fourier transform. Let $L_2(\mathbb{R}^n)$ be the Hilbert space of all square integrable functions on \mathbb{R}^n . Let \langle , \rangle be the inner product of the *n*-dimensional euclidean space \mathbb{R}^n . Let us realize the unitary representation $U^{\xi,\eta}(\hat{\xi} \in \mathbb{R}^n, \eta \in \mathbb{R})$ on $L_2(\mathbb{R}^n)$. For an element $g \in G$ of the form (1.1), we define $U_g^{\xi,\eta}$ by the formula

 $(U_a^{\varepsilon,\eta}F)(x) = e^{2\pi i \langle \varepsilon, b \rangle + 2\pi i \eta (c - \langle x, b \rangle)} F(x-a),$

 $(F \in L_2(\mathbb{R}^n), x \in \mathbb{R}^n)$. Then $U^{\varepsilon, \eta}$ is a unitary representation of G.

Lemma 1. If $\eta \neq 0, U^{0,\eta}$ is an irreducible unitary representation of G.

For the proof of this lemma, see e.g. [4].

Let R_z be the right translation of $L_2(\mathbb{R}^n)$ by $z \in \mathbb{R}^n : (R_z F)(x) = F(x+z)$. Then it can be shown that if $\eta \neq 0$, $R_{(1/\eta)(\xi-\xi')} U_{g}^{\xi,\eta} = U^{\xi',\eta} R_{(1/\eta)(\xi-\xi')}$ for every $g \in G$ and for every $\zeta, \xi' \in \mathbb{R}^n$. Thus by Lemma 1 we have the following

Lemma 2. If $\eta \neq 0$, $U^{\xi,\eta}$ is irreducible and $U^{\xi,\eta}$ is equivalent to $U^{\xi',\eta}$ by $R_{(1/\eta)(\xi-\xi')}$ for any $\xi, \xi' \in \mathbb{R}^n$.

We normalize the Haar measure dg on G such that

 $dg = da_1 \cdots da_n db_1 \cdots db_n dc$ for $g = \begin{pmatrix} 1 & a & c \\ 0 & I_n & b \\ 0 & 0 & 1 \end{pmatrix}$.

Then we have

$$T_{f}(\xi,\eta)F(x) = \int_{\mathbb{R}^{n}} K_{f}(\xi,\eta;x,y)F(y)dy, \qquad (F \in L_{2}(\mathbb{R}^{n}))$$

where $dy = dy_1 \cdots dy_n$ and

$$K_{f}(\xi,\eta;x,y) = \int_{\mathbf{R}^{n+1}} f \begin{pmatrix} 1 & x-y & c+\langle x,b \rangle \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} e^{2\pi i \langle \langle \xi,b \rangle + \eta c \rangle} db dc \quad (2.1)$$

Let \mathfrak{F} be the set of all infinitely differentiable functions $\Phi(x, y)$ on $\mathbb{R}^n \times \mathbb{R}^n$ such that $\Phi_0(y)$, which we define by $\Phi_0(y) = \Phi(0, y)$, are functions of $y \in \mathbb{R}^n$ with compact support. For any $r \ge 0$, put $\mathfrak{F}_r = \{ \Phi \in \mathfrak{F} ;$ supp $(\Phi_0) \subset \{ y \in \mathbb{R}^n ; |y_j| \le r, j=1, \cdots, n \} \}$. And for any $r \ge 0$ we denote by B_r the set of all elements $g = \begin{pmatrix} 1 & a & c \\ 0 & I_n & b \\ 0 & 0 & 1 \end{pmatrix} \in G$ such that $|a_j| \le r, |b_j|$

 $\leq r$ $(j=1, \dots, n)$ and $|c| \leq r$. Then we have the following

Lemma 3. For any $\xi \in \mathbb{R}^n$ and $\eta \in \mathbb{R}$, $K_f(\xi, \eta; x, y) \in \mathfrak{F}_r$ as a function of $x, y \in \mathbb{R}^n$, whenever $f \in C_c^{\infty}(G)$ and $\operatorname{supp}(f) \subset B_r$.

By this lemma we can define a \mathfrak{F} -valued function K_f on $\hat{H} \cong \mathbf{R}^{n+1}$ by

$$K_f[\xi,\eta](x,y) = K_f(\xi,\eta;x,y).$$

We shall call K_f the scalar Fourier transform of f.

For any $z \in \mathbb{R}^n$, we define an operator L_z on \mathfrak{F} by $(L_z \Phi)(x, y) = \Phi(x-y, y-z)$.

Lemma 4. Suppose that $f \in C_c^{\infty}(G)$. Then we have

(i) if $\eta \neq 0, K_f[\xi, \eta] = L_{(1/\eta)(\xi-\xi')}K_f[\xi', \eta]$ for every $\xi, \xi' \in \mathbb{R}^n$,

(ii) $K_f[\xi, 0] = L_z K_f[\xi, 0]$ for every $z, \xi \in \mathbb{R}^n$.

From Lemma 2 we can prove (i). The statement (ii) is an immediate consequence of (2.1).

3. The analogue of the Paley-Wiener theorem. Let K be a F-valued function on $\hat{H}^c \cong C^{n+1}$. We shall call that K is entire holomorphic if $K[\zeta, \omega](x, y)$ is an entire holomorphic function of $(\zeta, \omega) \in C^{n+1}$ for every $x, y \in \mathbb{R}^n$. For any polynomial $q(y_1, \dots, y_n)$ on \mathbb{R}^n we denote $q(D_y) = q(\partial/\partial y_1, \dots, \partial/\partial y_n)$.

Theorem. A \mathfrak{F} -valued function K on $\hat{H}^n (\cong \mathbb{R}^{n+1})$ is the scalar Fourier transform of $f \in C_c^{\infty}(G)$ such that supp $(f) \subset B_r$ if and only if it satisfies the following conditions:

- (1) $K[\xi, \eta] \in \mathfrak{F}_r$ for any $\xi \in \mathbf{R}^n$, $\eta \in \mathbf{R}$;
- (II) (i) If $\eta \neq 0, K[\xi, \eta] = L_{(1/\eta)\xi}K[0, \eta]$ for any $\xi \in \mathbb{R}^n$, (ii) $K[\xi, 0] = L_z K[\xi, 0]$ for any $\xi, z \in \mathbb{R}^n$;
- (III) K can be extended to an entire holomorphic function on \hat{H}^c ;

(IV) For any polynomial function p on \hat{H}^c and for any polynomial q on \mathbf{R}^n , there exists a constant $C_{p,q}$ such that

$$|p(\zeta, \omega)q(D_y)K[\zeta, \omega](0, y)| \leq C_{p,q} \exp 2\pi r \left(\sum_{j=1}^n |\operatorname{Im} \zeta_j| + |\operatorname{Im} \omega|\right)$$

for every $\zeta \in C^n$ and $\omega \in C$.

The necessity of the theorem follows from the facts mentioned in $\S 2$.

Let us assume that K is an arbitrary F-valued function on \hat{H} satisfying the conditions (I)-(IV) in the theorem. Define a function f on G by

$$f\begin{pmatrix} 1 & a & c \\ 0 & I_n & b \\ 0 & 0 & 1 \end{pmatrix} = \int_{\mathbf{R}^{n+1}} K[\xi, \eta](0, -a) e^{-2\pi i \langle \xi, b \rangle - 2\pi i \eta c} d\xi d\eta,$$

where $d\xi = d\xi_1 \cdots d\xi_n$.

Making use of the condition (I), and the classical Paley-Wiener theorem ([3]), it can be shown that supp $(f) \subset B_r$.

The differentiability of f follows from (IV) and the Lebesgue's theorem.

Finally we have to check that $K_f = K$ which can be shown using the functional equations (II).

K. KUMAHARA

References

- I. M. Gel'fand: On the structure of the ring of rapidly decreasing functions on a Lie group (in Russian). Doklady Akad. Nauk S. S. S. R., 124, 19 (1959).
- [2] K. Kumahara and K. Okamoto: An analogue of the Paley-Wiener theorem for the euclidean motion group (to appear).
- [3] R. Paley and N. Wiener: Fourier Transforms in the Complex Domain. Amer. Math. Soc. Colloquium Publ. New York (1934).
- [4] L. Pukanszky: Leçons sur les représentations des groupes. Dunod, Paris (1967).