117. Modules over Bounded Dedekind Prime Rings. II

By Hidetoshi Mardbayashi
College of General Education, Osaka University
(Comm. by Kenjiro Shoda, m. J. A., June 12, 1971)

This paper is a continuation of [3]. Let D be an s-local domain which is a principal ideal ring. Then every right (left) ideal is an ideal and every ideal of D is a power of $J(D)$ (see [2]). We put $J(D)=p_{0} D$ $=D p_{0}$. Then every non-unit $d \in D$ can be uniquely expressed as $d=p_{0}^{k} \varepsilon$ $=\varepsilon^{\prime} p_{0}^{k}$, where $\varepsilon, \varepsilon^{\prime}$ are units of D and k is an integer.

Let M be a D-module. An element x in M has height n if x is divisible by p_{0}^{n} but not by p_{0}^{n+1}; it has infinite height if it is divisible by p_{0}^{n} for every n. We write $h(x)$ for the height of x; thus $h(x)$ is a (nonnegative) integer or the symbol ∞. Terminology and notation will be taken from [3].

Lemma 1. Let D be an s-local domain which is a principal ideal ring, let M be a D-module and let S be a submodule with no elements of infinite height. Suppose that the elements of order $J(D)$ in S have the same height in S as in M. Then S is pure.

Lemma 2. Let D be an s-local domain which is a principal ideal ring and let M be a D-module. Suppose that all elements of order $J(D)$ in M have infinite height. Then M is divisible.

An R-module is said to be reduced if it has no non-zero divisible submodules.

Theorem 1. Let R be a bounded Dedekind prime ring and let P be a prime ideal of R. If M is a P-primary reduced R-module, then M possesses a direct summand which is isomorphic to $e R / e P^{n}$, where e is a uniform idempotent contained in R_{P}.

By Theorem 1, we have
Theorem 2. Let R be a bounded Dedekind prime ring. Then
(i) An finitely generated indecomposable R-module cannot be mixed and is not divisible, i.e., it is either torsion-free or torsion. In the former case, it is isomorphic to a uniform right ideal of R and in the latter case, it is isomorphic to $e R / e P^{n}$ for some prime ideal P, where e is a uniform idempotent contained in R_{P}.
(ii) $A n$ indecomposable torsion R-module is either of type P^{∞} or isomorphic to $e R / e P^{n}$ for some prime ideal P, where e is a uniform idempotent contained in R_{P}.

Lemma 3. Let D be an s-local ring with $J(D)=p_{0} D$ which is a principal ideal domain. Let M be a D-module, let H be a pure submodule
and let x be an element of order $J(D)$ not in H. Suppose that $h(x)$ $=n<\infty$ and suppose further that $h(x+a) \leqq h(x)$ for every a in H with $O(\alpha)=J(D)$. If K is the cyclic submodule generated by y with $x=y p_{o}^{n}$ and if $L=H+K$, then L is the direct sum of H and K, and L is pure again.

A D-module M is of bounded height if there exists a constant k such that $h(x) \leqq k$ for all x in M. A set $\left\{x_{i}\right\}$ of elements of M is pure independent if the sum $\sum x_{i} D$ is direct and pure in M.

Lemma 4. Let D be an s-local ring with $J=p_{o} D$ which is a principal ideal domain. Let M be a D-module and let A be the submodule of elements x satisfying $O(x)=J$. Suppose that B, C are submodules of A, with $C \subseteq B \subseteq A$, and that B is of bounded height. If $\left\{x_{i}\right\}$ is a pure independent set satisfying $\Sigma \oplus x_{i} D \cap A=C$, then $\left\{x_{i}\right\}$ can be enlarged on a pure independent set $\left\{y_{j}\right\}$ satisfying $\sum \oplus y_{j} D \cap A=B$.

Lemma 5. Let P be a prime ideal of a bounded Dedekind prime ring R and let $R_{P}=(D)_{k}$, where $D=e_{11} R_{P} e_{11}$ and e_{11} is the matrix with 1 in the $(1,1)$ position and zeros elsewhere. If M is a P-primary R module, then M is a direct sum of cyclic R-modules if and only if $M e_{11}$ is a direct sum of cyclic D-modules.

Lemma 6. With the same R, P, D and M as in Lemma 5, suppose that A is the D-submodule of elements x of $M e_{11}$ satisfying $O(x)=J(D)$. Then a necessary and sufficient condition for M to be a direct sum of cyclic R-modules is that A be the union of an ascending sequence of D submodules with bounded height.

Now let M be a P-primary R-module and let x be a non-zero element of M. Then x has height n if $x \in M P^{n}$ and $x \notin M P^{n+1}$, it has infinite height if $x \in M P^{n}$ for every n.

From Lemmas 3,4,5 and 6 we have
Theorem 3. Let P be a prime ideal of a bounded Dedekind prime ring R and let M be a P-primary R-module. Suppose that A is the submodule of elements x of M satisfying $x P=O$. Then a necessary and sufficient condition for M to be a direct sum of cyclic R-modules is that A be the union of an ascending sequence of submodules with bounded height.

Corollary. Let R be a bounded Dedekind prime ring and let M be a countable primary R-module with no elements of infinite height. Then M is a direct sum of cyclic R-modules.

From Theorem 3, we have
Theorem 4. Let R be a bounded Dedekind prime ring and let M be a primary R-module which is a direct sum of cyclic R-modules. Then any submodule N of M is a direct sum of cyclic R-modules.

Theorem 5. Let R be a bounded Dedekind prime ring and let M
be a decomposable R-module. Then any submodule of M is decomposable.

Let M be an R-module. We call $O(M)=\{r \in R \mid M r=0\}$ an order ideal of M. If M is an n-dimensional in the sense of Goldie, then we write $n=\operatorname{dim} M$.

Now, let M be a finitely generated R-module. Then M is a direct sum of uniform right ideals and uniform cyclic R-modules by Theorem 1 of [3] and Theorem 1. Thus we have

Theorem 6. Let R be a bounded Dedekind prime ring and let M be a finitely generated R-module. Then for a decomposition of M into the direct sum of uniform right ideals and uniform cyclic R-modules, suppose that:
(i) the number of direct summands of uniform right ideals is r,
(ii) the number of P-primary cyclic summands for a given prime ideal P is k_{p}, where $k_{p} \geqq 0$, and that the orders of these summands are

$$
P^{\alpha p_{1}}, P^{\alpha p_{2}}, \cdots, P^{\alpha p k p},
$$

where

$$
\alpha_{p 1} \geqq \alpha_{p 2} \geqq \cdots \geqq \alpha_{p k_{p}}
$$

For a decomposition of any submodule N of M into the direct sum of uniform right ideals and uniform cyclic R-modules, suppose that:
(i) the number of direct summands of uniform right ideals is s,
(ii) the number of P-primary cyclic summands for a given prime ideal P is l_{p}, where $l_{p} \geqq 0$, and that the orders of these summands are

$$
P^{\beta_{p 1}}, P^{\beta_{p 2}}, \cdots, P^{\beta_{p l p}},
$$

where

$$
\beta_{p_{1}} \geqq \beta_{p 2} \geqq \cdots \geqq \beta_{p_{1}} .
$$

Then
(a) $s \leqq r$
(b) $l_{p} \leqq k_{p}$ for each prime ideal P.
(c) $\beta_{p i} \leqq \alpha_{p i}\left(i=1,2, \cdots, l_{p}\right)$
(d) $r+\sum k_{p}=\operatorname{dim} M$ and $s+\sum l_{p}=\operatorname{dim} N$.

From Theorem 1 and Theorem 1 of [1], we have
Theorem 7. Let P be a prime ideal of a bounded Dedekind prime ring R and let M be a P-primary R-module. If M is decomposable, then M is a direct sum of uniform cyclic R-modules and the cardinal number of uniform cyclic summands of a given order is an invariant of M.

References

[1] G. Azumaya: Corrections and supplementaries to my paper concerning Krull-Remark-Schmidt's theorem. Nagoya Math., 1, 117-124 (1950).
[2] A. V. Jategaonkar: Left Principal Ideal Rings. Springer, Heidelberg (1970).
[3] H. Marubayashi: Modules over bounded Dedekind prime rings. I. Proc. Japan Acad., 47, 519-522 (1971).

