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0. For a connected finite 4-dimensional CW-complex X we denote
the group of stable vector bundles over X by K,(X), and the group of
orientable stable vector bundles over X by K,(X). In the previous
paper [2] S. Sasao and the author determined the group structures of
)2¢ so(X) by cohomology rings. In this note we shall determine the
relation between K,(X) and Kg,(X). Our results include that K,(X)
=K o(X)+H'X; Z,) if and only if S¢'H(X; Z,)=0. The author wishes
to thank Professor S. Sasao for his valuable suggestions.

1. We can easily prove the following

Proposition 1. The sequence

0—— R o(X)—> B ()5 HY(X 3 Z,)—0
s exact, where i is a map which forgets the orientation and W, maps
each class [E] to the first Whitney class W(&) of a bundle & which
represents [£].
This proposition shows that K ,(X) is an element of EXT(H'(X ; Z,),
K so(X)). So we investigate this group.
Proposition 2. There exists an isomorphism

¢: EXT(H\(X; Z,), KSO(X>-—»§ (K 50(X) /2K 50(X)),

where r=dim H(X ; Z,).

Proof. We assume that H*(X; Z,)=>7_, Z,[a;], where [ ] denotes
the generator. Consider the follwing exact sequence

0—H—sF—15 H(X; Z,)——0
where F is a free abelian group generated by {f;} such that j(f)=aqa;.
By {h;} we denote generators of H corresponding to {2f;} via <. Then
we know that there exists an isomorphism
p: EXT(H\(X; Zy), K5o(X))—HOM(H, K 5,(X)) /image HOM(F, K 5,(X))
defined as follows. For an exact sequence
0—K 5o(X)—G—H'X; Z)—0 ,

we take a set {g,} of elements of G going to {«;}. And we take a set {y;} of
elements of K, (X) going to {2g9:}. Now we put p(G)(h,)=7,; then o(G)
is uniquely defined as an element of HOM(H, K 5,(X)) /2HOM(H, K s,(X))
=HOM(H, K 5,(X))/image HOM(F, K s,(X)). Let p: K5o(X)—K 50(X)
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/ 2K so(X) beanatural projection. For any element & in HOM(H K so(X)),
we put ¥(k)=>7., pk(h;). Then it is easy to show that the map

v: HOMH, K s,(X))/2HOM(H, K so(X))*—"iZ:; (B 50(X) /2K 50(X)),
is bijective. Now ¢@=10p is the required isomorphism.

Let H(X; Z)=>; Z,Ja;] where [] denotes the generator of the
group, f.,: X—RP>~ be the characteristic map of a;, and &, be the
canonical line bundle over RP~. We take 5,=f*(&, in K,(X) to be
the induced bundle of &, by f.,. Then Proposition 2 shows that go(IZ' o(X))
=37, [29,] where [27,] in Ks,(X)/2K so(X) is the class represented by
2n,.

2. Now we assume that H(X; Z,) =3 7., Z,[«a;].

At first we suppose that a;?+#0. Then we have that W(y,)=1+«,
for n,=r¥(&,), where W(y,) is the total Whitney class of 7,. For any
element 7 in K,(X), we have that

W@2(n,®n)=W(n,Ddn)*

=Wn) W)

=1+ a)’)A+W,()+---)?

=1+ a+ W'+ -

+*1.
Hence the bundle 2(»;®7) is non-trivial for any 7 in Ko(X). Thus we
proved that if a2+0, then [2,] is non-zero in K 5o(X) /2K s,(X).

Secondly we suppose that a?=0. Consider the following com-

mutative diagram;
fay

7€ Ko(X) <= Ko(RP>) 5 &,
[4 (4]

neRx) Lo REPYse
r r

2=l € R5o(X) LR so(PR") 5 £/ =26,
Here ¢: K,(X)—K(X) is the complexification and r: K(X)—Ks(X) is
the rearization. Then we have that 5} =rc(n;)=2%;. The mod 2 reduc-
tion of the first Chern class of the bundle 7} is as follows.
C\(0D. =W, (97)=W,(2n,)=ai=0.
So there exists an element y, in H*X; Z) such that C,(y)=2y;. Let
9:,: X—CP> be the characteristic map of y,, and {, be the canonical
complex line bundle over CP>. If we put §,=g#(,) in K(X), we have
that C,(6,)=7,. So we get the equations that
C(0D) =2y,;=C\(n).
As the bundles ¢ and 7] are complex line bundles over X, we have that
0i=n;. And the first Chern class of g#({3) is as follows.
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Ci(g7 (D)) =g5(C.(pD) = 97%2C (L)) =2C (g5
=2C,0)=27,.
So we have that gX({)=7;=03.
If we assume that dim X=4, we may use CP? for the classifying

space CP> in the above. So we have the following commutative
diagram.

= e RX) <& RCPYs(@

r r

29, =7 € Rso(X) LR 5o(CP?) 5 7).
We will prove that 7({2) can be divided by 2 in Kgo(CP?). According
to J. F. Adams [1], we have that K(CP)=Z[p]+ Z[p*, where p={,
—1. As the complex line bundle {, equals to ¢, we have that the ele-
ment (% in K(CP? comes from K(S% in the following diagram.
0—> K(SH — R(CP) — K(S») —0

0—— K 55(8)—— K 5o(CP)— K 55(S)—0.
Commutativity of the above diagram shows that »({?) is divisible by 2 in
Kso(CP?). Thus we proved that [29,]1=0 in K 5,(X)/2K so(X) if a2=0.

Summarizing the above, we have

Theorem. Let X be a connected finite 4-dimensional CW-complex
whose first cohomology group H(X;Z)=> 1., Z,la;). In

EXT(H‘(X;Z,),I?SO(X))gijl (K 50(X) |2K 50(X)) s
the direct summand (K so(X) /2K 5o(X)); of K(X) corresponding to a;
s zero if and only if a2=0.
Remark. This theorem is valid for dim X <7.
3. In this section we give an application. Let X be a connected
finite 4-dimensional CW-complex. The results of [2] are the following:

If we represent cohomology groups of X so that they satisfy the
following properties i)-ii).

H(X; Z)=3, ;: Z,x,]+ z VALA)
H(X; Z,)= z Z{Td+ 3, jz Z,%:,].
HY(X; Z)= z Zlyd+ 3] jz Zoulzy,]

+ Z Z i Zpi[vpij]‘

p: odd prime =1 j=1
i) x;=0,2};=¥, for 1<j<s,, and 2};=%,;, for 1<7 and 1<7<s,.
i) %,=%(yy, and Z,,=1,(2,;), where ¢,: H(X; Z)—H'X; Z,).
Then we have that
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$7

Rso(X)=3 2,43 3 z+z z

i=1j=

T4 123
+Z > Zut+ X Z 2 L pie
=1 j=s8;+1 p: odd prime i=1 j=1

Let us assume that H(X; Z,)=Z,[a], and a*+0.

a) If a'=0, there exists an element x; in H*X; Z,) such that a®
=&;. So we have that 2f*(&,) is equivalent to the generator of order
2in K so(X) (which is %, in [2]). Thus we have that /¢ o(X) is isomor-
phic to the group replacing a summand Z, with Z, in K 4,(X).

b) If a*£0, we have that d(a)?*s~0 where 0: H(X ; Z,)—~HXX : Z)
is the connecting homomorphism. The fact that 20(a)=0 shows that
there exists an element z,;, in H4X ; Z) such that d(a)*=z,;. Thus we
have that 27*(&,) is equivalent to the generator of order 4 in Ko o(X)
(which is %7, in [2]). Now K o(X) is isomorphic to the group replacing
a summand Z, with Z; in K,(X).
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