170. On Some Subgroups of the Group $\operatorname{Sp}(2 n, 2)$

By Eiichi Bannai*)
University of Tokyo

(Comm. by Kunihiko Kodaira, m. J. A., Dec. 13, 1971)

Introduction. We say that a subgroup H of a group G is of rank 2, if the number of double cosets $H \backslash G / H$ is equal to 2 . Any subgroup of rank 2 of G is the stabilizer of a point of some doubly transitive permutation representation of G, and vice versa. It is known that the symplectic group $S p(2 n, 2)$ has two kinds of subgroups of rank 2 of index $2^{n-1}\left(2^{n}+1\right)$ and $2^{n-1}\left(2^{n}-1\right)$ which are isomorphic to the groups $0(2 n, 2$, $+1)$ and $0(2 n, 2,-1)$, respectively. Here $0(2 n, 2,+1)$ and $0(2 n, 2,-1)$ denote the orthogonal group of index n and $n-1$ defined over a field with 2 elements, respectively.

The purpose of this note is to give an outline of the proof of the following Theorem 1 which asserts that the two kinds of subgroups mentioned above are the only subgroups of rank 2 of the group $S p(2 n, 2)$. Details will be published elsewhere.

Theorem 1. Let H be a subgroup of rank 2 of the group $S p(2 n$, 2), $n \geqslant 3$. Then either

1) H is of index $2^{n-1}\left(2^{n}+1\right)$ and is isomorphic to the group $0(2 n, 2$, +1), or
2) H is of index $2^{n-1}\left(2^{n}-1\right)$ and is isomorphic to the group $0(2 n, 2,-1)$.
§1. The group $\operatorname{Sp}(2 n, 2)$.
We may define $G=S p(2 n, 2)$, the symplectic group defined over the finite field $G F(2)$, by

$$
G=\left\{X \in G L(2 n, 2) ;{ }^{t} X J X=J, \text { with } J=\left(\begin{array}{ll}
I_{n} & I_{n}
\end{array}\right)\right\}
$$

Here I_{n} denotes the $n \times n$ identity matrix, and the unwritten places of any matrix always represent 0 . The group $G=S p(2 n, 2)$ is simple if $n \geqslant 3$.

Let us define some subgroups of the group G as follows:

$$
\begin{aligned}
Q & =\left\{X \in G L(2 n, 2) ; X=\left(\begin{array}{cc}
I_{n} & B \\
& I_{n}
\end{array}\right), \text { with }{ }^{t} B=B\right\} \\
L & =\left\{X \in G L(2 n, 2) ; X=\left(\begin{array}{cc}
A & t-1 \\
& A
\end{array}\right), \text { with } A \in G L(n, 2)\right\} \\
R & =\left\{X \in G L(2 n, 2) ; X=\left(\begin{array}{cc}
A & t-1 \\
& A
\end{array}\right), \text { where } A\right. \text { is any upper triangu- }
\end{aligned}
$$

lar unipotent $n \times n$ matrix $\}$.

[^0]Then L and R normalizes Q. We set $B=R Q$ (semi-direct product). Let π denote the canonical projection $B=R Q \rightarrow R=B / Q$.

Now, $Z(B)\left(=\right.$ the center of B) consists of 4 elements $1, u_{1}, u_{2}$ and u_{3}, where $u_{1}=I_{2 n}+e_{1, n+1}, u_{2}=I_{2 n}+e_{2, n+1}+e_{1, n+2}$ and $u_{3}=u_{1} u_{2}=I_{2 n}+e_{1, n+1}$ $+e_{1, n+2}+e_{2, n+1}$. Here the $e_{i j}$ denote the matrix whose (i, j)-entry is 1 and other entries are all 0 .

We can also regard the group $G=S p(2 n, 2)$ as the Chevalley group of type $\left(C_{n}\right)$ defined over the field $G F(2)$. Naturally G has a Tits system (i.e., $B N$-pair) whose Coxeter diagram (W, R) is as follows:

For any subset $J \subset R$, the groups W_{J} and G_{J} are defined by
$W_{J}=$ the group generated by the w_{i} with $w_{i} \in J$,
$G_{J}=\bigcup_{w \in W_{J}} B w B$, where B denotes the Borel subgroup of the Tits system.

Now, we can show that we may take the subgroup $R Q=B$ for the Borel subgroup, the group $C_{G}\left(u_{1}\right)$ (resp. $\left.C_{G}\left(u_{2}\right), C_{G}\left(u_{3}\right)\right)$ for the subgroup $G_{R-\left\{w_{1}\right\}}\left(\right.$ resp. $\left.G_{R-\left\{w_{2}\right\}}, G_{R-\left\{w_{1}, w_{2}\right)}\right)$ and the group $L Q$ for the subgroup $G_{R-\left\{w_{n}\right\}}$ of a fixed Tits system of G.
§2. Outline of the proof of Theorem 1.
Let H be a subgroup of rank 2 of the group $G=S p(2 n, 2)$, and let χ be the irreducible character of G such that $\left(1_{H}\right)^{G}=1_{G}+\chi$, where 1_{H} and $\mathbf{1}_{G}$ denote the identity characters of the groups H and G respectively and $\left(1_{H}\right)^{G}$ denotes the induced character of 1_{H} to G. We fix these notations throughout this note.

To avoid the complication of the statements and to clarify the method of the proof, we always assume that $n \geqslant 7$ in the rest of this note. The proof for $n=3,4,5$ and 6 is done in the same way as that for $n \geqslant 7$ in broad outline although some special treatments are needed, and is omitted in this note.

The proof of Theorem 1 is completed using the following chain of Lemmas 1 to 5 .

Lemma 1. $|G: H| \leqslant 2^{2 n}$, consequently $\chi(1) \leqslant 2^{2 n}-1$.
Proof of Lemma 1. Since $\left|G: C_{G}\left(u_{1}\right)\right|=2^{2 n}-1$, we have the assertion by a lemma of Ed. Maillet (Cf. [1], Lemma 3).

Lemma 2. H contains an element x which is conjugate to one of the elements u_{1}, u_{2} and u_{3}.

To prove Lemma 2, we need Propositions A and B.
Proposition A (This is proved by making use of the results in J. A. Green [3]. Here we use the assumption that $n \geqslant 7$). The irreducible characters of $G L(n, 2)$ whose degrees are $\leqslant 2^{2 n-2}$ are as follows:

1) $I_{1}[n]$, of degree 1 ,
2) $I_{1}[n-1,1]$, of degree $2\left(2^{n-1}-1\right)$,
3) $I_{1}[n-2,2]$, of degree $\frac{2^{2}}{3}\left(2^{n}-1\right)\left(2^{n-3}-1\right)$,
4) $-I_{2}[1] \circ I_{n-2}[1]$, of degree $\frac{1}{3}\left(2^{n}-1\right)\left(2^{n-1}-1\right)$.
(For the notation, see [3]. Since the 1 -simplex and 2 -simplex are unique in this case, the subscripts about simpleces are omitted.)

Proposition B (This is proved by Proposition A together with some additional considerations). Any subgroup K of $G L(n, 2)$ whose index is $\leqslant 2^{2 n-2}$ is conjugate to one of the following subgroups:

1) $G L(n, 2)$,
2) $G^{(1)}=\left\{X \in G L(n, 2) ; X=\left(\right.\right.$| 1 | |
| :---: | :---: |
| | |
| $\dot{*}$ | A |$\left.), A \in G L(n-1,2)\right\}$,
3) $G^{(2)}=\left\{X \in G L(n, 2) ; X=\left(\begin{array}{c|c}\frac{A}{* *} & \\ \vdots & B \\ *^{*}\end{array}\right), A \in G L(2,2), B \in G L(n-2,2)\right\}$,
4)

$G^{(n-2)}=\left\{X \in G L(n, 2) ; X=\left(\begin{array}{c|c}A & \\ \hline * \cdots * & B \\ \cdots \cdots *\end{array}\right)\right.$,

$$
A \in G L(n-2,2), B \in G L(2,2)\}
$$

5) $\quad G^{(n-1)}=\left\{X \in G L(n, 2) ; X=\left(\left.\frac{A}{* \cdots *} \right\rvert\,-1\right), A \in G L(n-1,2)\right\}$.

Proof of Lemma 2. Let us assume that the assertion is false. Clearly we have $|L Q: L Q \cap H| \leqslant 2^{2 n}$ by Lemma 1 , and we have $|L: \pi(L Q \cap H)| \leqslant 2^{2 n-2}$ from the above assumption. Thus we may assume that $\pi(L Q \cap H)$ is one of the subgroups listed in Proposition B. Clearly we have $|Q: Q \cap H| \leqslant 2^{2 n}$, and the group $Q \cap H$ must be invariant under the action of $\pi(L Q \cap H)$. However, we can show that for every group $\pi(L Q \cap H)$ listed in Proposition B, any subgroup of Q which is of index $\leqslant 2^{2 n}$ and invariant under the action of $\pi(L Q \cap H)$ contains an element which is conjugate in G to one of u_{1}, u_{2} and u_{3}, a contradiction. Thus Lemma 2 is proved.

Lemma 3. The irreducible character χ appears in $\left(1_{\left.G_{R-\left\{w_{1}, w_{2}\right\}}\right)^{G}}\right.$.
Proof of Lemma 3. By Lemma $2 H$ contains an element x which is conjugate in G to one of u_{1}, u_{2} and u_{3}. Let us assume that χ does not appear in $\left(1_{G_{R-\left\{w_{1}, w_{2}\right\}}}\right)^{G}$. Then 1_{G} is the only irreducible character of G which appears both in $\left(1_{G_{G}(x)}\right)^{G}$ and $\left(1_{H}\right)^{G}$, hence a theorem of D. E. Littlewood and J. S. Frame shows that $G=C_{G}(x) H$. Hence we have $\left|G: C_{G}(x)\right|=\left|C_{G}(x) H: H\right|=\left|H: H \cap C_{G}(x)\right|=\left|H: C_{H}(x)\right|$. Now, the subgroup generated by the elements which are conjugate in G to x is a
subgroup of $H(\nsupseteq G)$, and moreover this subgroup must be a normal subgroup of G. This is a contradiction, and Lemma 3 is proved.

Lemma 4. The irreducible character χ is equal to either the irreducible character χ_{1} or χ_{2}, where χ_{1} and χ_{2} are the non-identity irreducible characters of G appearing in $\left(1_{G_{R-\left(w_{1}\right)}}\right)^{\text {a }}$. Moreover, the index of H in G is either $2^{n-1}\left(2^{n}+1\right)$ or $2^{n-1}\left(2^{n}-1\right)$.

To prove Lemma 4, we need Propositions C and D.
Proposition C. $\left(1_{G_{R-\left\{w_{1}\right\}}}\right)^{G}$ is decomposed into 3 irreducible characters whose multiplicities are all $1 .\left(1_{G_{R-\left\{w_{2}\right\}}}\right)^{G}$ is decomposed into 6 irreducible characters whose multiplicities are all 1. $\left(1_{\left.G_{R-\left\{w_{1}, w_{2}\right\}}\right)^{G}}\right.$ is decomposed into 8 irreducible characters of which 5 are of multiplicities 1 and 3 are of multiplicities 2.

Proposition C is proved by looking at the characters of the Weyl group. (See [2], there it is proved that there exists a bijection between the set of irreducible characters of W and the set of irreducible characters of G appearing in $\left(1_{B}\right)^{G}$ which preserves the multiplicities in $\left(1_{W J}\right)^{W}$ and $\left(1_{G_{J}}\right)^{G}$.)

Proposition D. The degree of 6 irreducible characters of G appearing in $\left(1_{G_{R-\left\{w_{2}\right\}}}\right)^{G}$ are as follows:

1) 1
2) $\left(2^{n}-1\right)\left(2^{n-1}+1\right)$
3) $\left(2^{n}+1\right)\left(2^{n-1}-1\right)$
4) $\frac{2}{9}\left(2^{n}+1\right)\left(2^{n}-1\right)\left(2^{n-1}+1\right)\left(2^{n-3}-1\right)$
5) $\frac{2}{9}\left(2^{n}+1\right)\left(2^{n}-1\right)\left(2^{n-1}-1\right)\left(2^{n-3}+1\right)$
6) $\frac{8}{9}\left(2^{n}+1\right)\left(2^{n}-1\right)\left(2^{n-2}+1\right)\left(2^{n-2}-1\right)$.

Moreover the first three members are those characters appearing in $\left(1_{G_{R-\left\{w_{1}\right.}}\right)^{G}$ and are respectively $1_{G}, \chi_{1}$ and χ_{2}.

Proposition D is proved by the method of intersection matrices in D. G. Higman [4]. Note that the intersection matrix of the permutation group ($G, G / G_{R-\left\{w_{2}\right\}}$) is given as follows: rank is 6 and the subdegrees are $l_{0}=1, l_{1}=6\left(2^{2 n-4}-1\right), l_{2}=16 / 3\left(2^{2 n-4}-1\right)\left(2^{2 n-6}-1\right), l_{3}=2^{4 n-5}, l_{4}$ $=6 \cdot 2^{2 n-4}$ and $l_{8}=3 \cdot 2^{2 n-2}\left(2^{2 n-4}-1\right)$; the intersection matrix $M=\left(\mu_{i j}^{(1)}\right)$ is given by
$\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 6\left(2^{2 n-4}-1\right) & 2^{2 n-4}+1 & 9 & 0 & 2^{2 n-4}-1 & 1 \\ 0 & 2^{2 n-3}-8 & 3 \cdot 2^{2 n-5}-15 & 0 & 0 & 2^{2 n-5}-2 \\ 0 & 0 & 0 & 3\left(2^{2 n-4}-1\right) & 0 & 2^{2 n-3} \\ 0 & 2^{2 n-4} & 0 & 0 & 2^{2 n-4}-1 & 2 \\ 0 & 2^{2 n-3} & 9 \cdot 2^{2 n-5} & 3\left(2^{2 n-4}-1\right) & 2^{2 n-4}-4 & 7 \cdot 2^{2 n-5}-7\end{array}\right) ;$
the eigen values of M are $\theta_{0}=6\left(2^{2 n-4}-1\right), \theta_{1}=\left(2^{n-1}-5\right)\left(2^{n-2}+1\right), \theta_{2}$ $=\left(2^{n-1}+5\right)\left(2^{n-2}-1\right), \theta_{3}=-3\left(2^{n-2}+1\right), \theta_{4}=3\left(2^{n-2}-1\right)$ and $\theta_{5}=-3$. We have the degrees by [4], Theorem 5.5. The assertion of the latter part is easily verified.

Proof of Lemma 4. Let ψ_{1}, ψ_{2} be the irreducible characters of G which appear in $\left(1_{\left.G_{R-\left\{w_{1}, w_{2}\right\}}\right)^{G}}\right.$ but not in $\left(1_{\left.G_{R-\left\{w_{2}\right.}\right)}\right)^{G}$. Now, we can show using Propositions C and D that if $\psi_{1}(1)$ or $\psi_{2}(1)$ is odd then both $\psi_{1}(1)$ and $\psi_{2}(1)$ are $\geqslant 2^{2 n}$. Thus Lemma 4 is immediately proved by Propositions C and D together with the fact that $\chi(1)$ is odd. Because, if $\chi(1)$ is even, then H contains a Sylow 2 -subgroup, and so H is a parabolic subgroup. However, we can see that there exists no parabolic subgroup of rank 2. This is proved by looking at the Weyl group (see [2]).

Lemma 5 (This lemma complete the proof of Theorem 1). H is isomorphic to either $0(2 n, 2,+1)$ or $0(2 n, 2,-1)$.

Proof of Lemma 5. Let H be the subgroup of H generated by all elations in H. From Lemma 4, we can see that H_{0} contains $2^{n-1}\left(2^{n}-1\right)$ or $2^{n-1}\left(2^{n}+1\right)$ elations according as $\chi=\chi_{1}$ or χ_{2}. Using this fact we can prove first that H is an irreducible subgroup, and next that H_{0} is an irreducible subgroup. The final step of the identification is done using the classification theorem of irreducible subgroups of $S L(2 n, 2)$ generated by elations (transvections) due to J. McLaughlin [5].

References

[1] E. Bannai: Doubly transitive permutation representations of the finite projective special linear groups $\operatorname{PSL}(n, q)$ (to appear in the Osaka J. Math.).
[2] C. W. Curtis, N. Iwahori, and R. Kilmoyer: Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs (to appear in the Publ. I. H. E. S.).
[3] J. A. Green: The characters of the finite general linear groups. Trans. Amer. Math. Soc., 80, 402-447 (1955).
[4] D. G. Higman: Intersection matrices for finite permutation groups. J. of Algebra, 6, 22-42 (1967).
[5] J. McLaughlin: Some subgroups of $S L_{n}\left(F_{2}\right)$. Ill. J. Math., 13, 108-115 (1969).

[^0]: *) Supported in part by the Fujukai Foundation.

