170. On Some Subgroups of the Group Sp(2n, 2)

By Eiichi BANNAI^{*)} University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Dec. 13, 1971)

Introduction. We say that a subgroup H of a group G is of rank 2, if the number of double cosets $H \setminus G/H$ is equal to 2. Any subgroup of rank 2 of G is the stabilizer of a point of some doubly transitive permutation representation of G, and vice versa. It is known that the symplectic group Sp(2n, 2) has two kinds of subgroups of rank 2 of index $2^{n-1}(2^n+1)$ and $2^{n-1}(2^n-1)$ which are isomorphic to the groups 0(2n, 2, +1) and 0(2n, 2, -1), respectively. Here 0(2n, 2, +1) and 0(2n, 2, -1) denote the orthogonal group of index n and n-1 defined over a field with 2 elements, respectively.

The purpose of this note is to give an outline of the proof of the following Theorem 1 which asserts that the two kinds of subgroups mentioned above are the only subgroups of rank 2 of the group Sp(2n,2). Details will be published elsewhere.

Theorem 1. Let H be a subgroup of rank 2 of the group Sp(2n, 2), $n \ge 3$. Then either

1) H is of index $2^{n-1}(2^n+1)$ and is isomorphic to the group 0(2n, 2, +1), or

2) H is of index $2^{n-1}(2^n-1)$ and is isomorphic to the group 0(2n, 2, -1).

§1. The group Sp(2n, 2).

We may define G = Sp(2n, 2), the symplectic group defined over the finite field GF(2), by

$$G = \left\{ X \in GL(2n, 2) ; {}^{t}XJX = J, \text{ with } J = \begin{pmatrix} & I_{n} \\ I_{n} \end{pmatrix} \right\}.$$

Here I_n denotes the $n \times n$ identity matrix, and the unwritten places of any matrix always represent 0. The group G=Sp(2n,2) is simple if $n \ge 3$.

Let us define some subgroups of the group G as follows:

lar unipotent $n \times n$ matrix $\}$.

^{*)} Supported in part by the Fujukai Foundation.

Then L and R normalizes Q. We set B=RQ (semi-direct product). Let π denote the canonical projection $B=RQ \rightarrow R=B/Q$.

Now, Z(B)(=the center of B) consists of 4 elements 1, u_1 , u_2 and u_3 , where $u_1 = I_{2n} + e_{1,n+1}$, $u_2 = I_{2n} + e_{2,n+1} + e_{1,n+2}$ and $u_3 = u_1u_2 = I_{2n} + e_{1,n+1} + e_{1,n+2} + e_{2,n+1}$. Here the e_{ij} denote the matrix whose (i, j)-entry is 1 and other entries are all 0.

We can also regard the group G = Sp(2n, 2) as the Chevalley group of type (C_n) defined over the field GF(2). Naturally G has a Tits system (i.e., BN-pair) whose Coxeter diagram (W, R) is as follows:

$$\underbrace{\bigcirc}_{w_1} \underbrace{\bigcirc}_{w_2} \underbrace{\bigcirc}_{w_3} \cdots \underbrace{\bigcirc}_{w_{n-1}} \underbrace{w_n} R = \{w_1, w_2, \cdots, w_n\}.$$

For any subset $J \subseteq R$, the groups W_J and G_J are defined by

 W_J = the group generated by the w_i with $w_i \in J$,

 $G_J = \bigcup_{w \in W_J} BwB$, where B denotes the Borel subgroup of the Tits system.

Now, we can show that we may take the subgroup RQ=B for the Borel subgroup, the group $C_G(u_1)$ (resp. $C_G(u_2)$, $C_G(u_3)$) for the subgroup $G_{R-\{w_1\}}$ (resp. $G_{R-\{w_2\}}$, $G_{R-\{w_1,w_2\}}$) and the group LQ for the subgroup $G_{R-\{w_n\}}$ of a fixed Tits system of G.

§2. Outline of the proof of Theorem 1.

Let *H* be a subgroup of rank 2 of the group G = Sp(2n, 2), and let χ be the irreducible character of *G* such that $(1_H)^G = 1_G + \chi$, where 1_H and 1_G denote the identity characters of the groups *H* and *G* respectively and $(1_H)^G$ denotes the induced character of 1_H to *G*. We fix these notations throughout this note.

To avoid the complication of the statements and to clarify the method of the proof, we always assume that $n \ge 7$ in the rest of this note. The proof for n=3, 4, 5 and 6 is done in the same way as that for $n \ge 7$ in broad outline although some special treatments are needed, and is omitted in this note.

The proof of Theorem 1 is completed using the following chain of Lemmas 1 to 5.

Lemma 1. $|G:H| \leq 2^{2n}$, consequently $\chi(1) \leq 2^{2n} - 1$.

Proof of Lemma 1. Since $|G: C_G(u_1)| = 2^{2n} - 1$, we have the assertion by a lemma of Ed. Maillet (Cf. [1], Lemma 3).

Lemma 2. *H* contains an element x which is conjugate to one of the elements u_1 , u_2 and u_3 .

To prove Lemma 2, we need Propositions A and B.

Proposition A (This is proved by making use of the results in J. A. Green [3]. Here we use the assumption that $n \ge 7$). The irreducible characters of GL(n, 2) whose degrees are $\le 2^{2n-2}$ are as follows: 1) $I_1[n]$, of degree 1,

2) $I_1[n-1, 1]$, of degree $2(2^{n-1}-1)$,

Some Subgroups of Group Sp(2n, 2)

3)
$$I_1[n-2, 2]$$
, of degree $\frac{2^2}{3}(2^n-1)(2^{n-3}-1)$,
4) $-I_2[1] \circ I_{n-2}[1]$, of degree $\frac{1}{3}(2^n-1)(2^{n-1}-1)$.

(For the notation, see [3]. Since the 1-simplex and 2-simplex are unique in this case, the subscripts about simpleces are omitted.)

Proposition B (This is proved by Proposition A together with some additional considerations). Any subgroup K of GL(n, 2) whose index is $\leq 2^{2n-2}$ is conjugate to one of the following subgroups: 1) GL(n, 2),

2)
$$G^{(1)} = \left\{ X \in GL(n,2) ; X = \left(\begin{array}{c|c} 1 \\ \vdots \\ \vdots \\ * \end{array} \middle| A \right), A \in GL(n-1,2) \right\},$$

3) $G^{(2)} = \left\{ X \in GL(n,2) ; X = \left(\begin{array}{c|c} A \\ \vdots \\ \vdots \\ ** \end{array} \middle| B \right), A \in GL(2,2), B \in GL(n-2,2) \right\},$
4) $G^{(n-2)} = \left\{ X \in GL(n,2) ; X = \left(\begin{array}{c|c} A \\ \hline & \ddots & \ast \\ & \ast & \ddots & \ast \\ \end{array} \right), A \in GL(n-2,2), B \in GL(2,2) \right\},$

5)
$$G^{(n-1)} = \left\{ X \in GL(n,2) ; X = \left(\frac{A}{* \cdots *} \right| 1 \right), A \in GL(n-1,2) \right\}.$$

Proof of Lemma 2. Let us assume that the assertion is false. Clearly we have $|LQ:LQ\cap H| \leq 2^{2n}$ by Lemma 1, and we have $|L:\pi(LQ\cap H)| \leq 2^{2n-2}$ from the above assumption. Thus we may assume that $\pi(LQ\cap H)$ is one of the subgroups listed in Proposition B. Clearly we have $|Q:Q\cap H| \leq 2^{2n}$, and the group $Q\cap H$ must be invariant under the action of $\pi(LQ\cap H)$. However, we can show that for every group $\pi(LQ\cap H)$ listed in Proposition B, any subgroup of Q which is of index $\leq 2^{2n}$ and invariant under the action of $\pi(LQ\cap H)$ contains an element which is conjugate in G to one of u_1, u_2 and u_3 , a contradiction. Thus Lemma 2 is proved.

Lemma 3. The irreducible character χ appears in $(1_{G_{R-\{w_1,w_2\}}})^G$.

Proof of Lemma 3. By Lemma 2 H contains an element x which is conjugate in G to one of u_1, u_2 and u_3 . Let us assume that χ does not appear in $(1_{G_{R-}\{w_1,w_2\}})^G$. Then 1_G is the only irreducible character of G which appears both in $(1_{C_G(x)})^G$ and $(1_H)^G$, hence a theorem of D. E. Littlewood and J. S. Frame shows that $G=C_G(x)H$. Hence we have $|G: C_G(x)|=|C_G(x)H:H|=|H:H\cap C_G(x)|=|H:C_H(x)|$. Now, the subgroup generated by the elements which are conjugate in G to x is a

No. 10]

subgroup of $H(\leq G)$, and moreover this subgroup must be a normal subgroup of G. This is a contradiction, and Lemma 3 is proved.

Lemma 4. The irreducible character χ is equal to either the irreducible character χ_1 or χ_2 , where χ_1 and χ_2 are the non-identity irreducible characters of G appearing in $(\mathbf{1}_{G_{R-\{w_1\}}})^G$. Moreover, the index of H in G is either $2^{n-1}(2^n+1)$ or $2^{n-1}(2^n-1)$.

To prove Lemma 4, we need Propositions C and D.

Proposition C. $(1_{G_{R-\{w_1\}}})^G$ is decomposed into 3 irreducible characters whose multiplicities are all 1. $(1_{G_{R-\{w_2\}}})^G$ is decomposed into 6 irreducible characters whose multiplicities are all 1. $(1_{G_{R-\{w_1,w_2\}}})^G$ is decomposed into 8 irreducible characters of which 5 are of multiplicities 1 and 3 are of multiplicities 2.

Proposition C is proved by looking at the characters of the Weyl group. (See [2], there it is proved that there exists a bijection between the set of irreducible characters of W and the set of irreducible characters of G appearing in $(1_B)^G$ which preserves the multiplicities in $(1_{W_J})^W$ and $(1_{\sigma_J})^G$.)

Proposition D. The degree of 6 irreducible characters of G appearing in $(1_{G_{R-\{w_s\}}})^{G}$ are as follows:

- 1) 1
- 2) $(2^n-1)(2^{n-1}+1)$
- 3) $(2^n+1)(2^{n-1}-1)$

4)
$$\frac{2}{9}(2^{n}+1)(2^{n}-1)(2^{n-1}+1)(2^{n-3}-1)$$

5)
$$\frac{2}{9}(2^{n}+1)(2^{n}-1)(2^{n-1}-1)(2^{n-3}+1)$$

6)
$$\frac{8}{9}(2^n+1)(2^n-1)(2^{n-2}+1)(2^{n-2}-1).$$

Moreover the first three members are those characters appearing in $(1_{\mathcal{G}_{R-\{w_1\}}})^{\mathcal{G}}$ and are respectively $1_{\mathcal{G}}$, χ_1 and χ_2 .

Proposition D is proved by the method of intersection matrices in D. G. Higman [4]. Note that the intersection matrix of the permutation group $(G, G/G_{R-\{w_2\}})$ is given as follows: rank is 6 and the subdegrees are $l_0=1$, $l_1=6(2^{2n-4}-1)$, $l_2=16/3(2^{2n-4}-1)(2^{2n-6}-1)$, $l_3=2^{4n-5}$, l_4 $=6\cdot 2^{2n-4}$ and $l_6=3\cdot 2^{2n-2}(2^{2n-4}-1)$; the intersection matrix $M=(\mu_{ij}^{(1)})$ is given by

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 6(2^{2n-4}-1) & 2^{2n-4}+1 & 9 & 0 & 2^{2n-4}-1 & 1 \\ 0 & 2^{2n-3}-8 & 3 \cdot 2^{2n-5}-15 & 0 & 0 & 2^{2n-5}-2 \\ 0 & 0 & 0 & 3(2^{2n-4}-1) & 0 & 2^{2n-3} \\ 0 & 2^{2n-4} & 0 & 0 & 2^{2n-4}-1 & 2 \\ 0 & 2^{2n-3} & 9 \cdot 2^{2n-5} & 3(2^{2n-4}-1) & 2^{2n-4}-4 & 7 \cdot 2^{2n-5}-7 \end{pmatrix};$$

the eigen values of M are $\theta_0 = 6(2^{2n-4}-1)$, $\theta_1 = (2^{n-1}-5)(2^{n-2}+1)$, $\theta_2 = (2^{n-1}+5)(2^{n-2}-1)$, $\theta_3 = -3(2^{n-2}+1)$, $\theta_4 = 3(2^{n-2}-1)$ and $\theta_5 = -3$. We have the degrees by [4], Theorem 5.5. The assertion of the latter part is easily verified.

Proof of Lemma 4. Let ψ_1 , ψ_2 be the irreducible characters of G which appear in $(1_{G_{R-\{w_1,w_n\}}})^G$ but not in $(1_{G_{R-\{w_n\}}})^G$. Now, we can show using Propositions C and D that if $\psi_1(1)$ or $\psi_2(1)$ is odd then both $\psi_1(1)$ and $\psi_2(1)$ are $\geq 2^{2n}$. Thus Lemma 4 is immediately proved by Propositions C and D together with the fact that $\chi(1)$ is odd. Because, if $\chi(1)$ is even, then H contains a Sylow 2-subgroup, and so H is a parabolic subgroup. However, we can see that there exists no parabolic subgroup of rank 2. This is proved by looking at the Weyl group (see [2]).

Lemma 5 (This lemma complete the proof of Theorem 1). *H* is isomorphic to either 0(2n, 2, +1) or 0(2n, 2, -1).

Proof of Lemma 5. Let H be the subgroup of H generated by all elations in H. From Lemma 4, we can see that H_0 contains $2^{n-1}(2^n-1)$ or $2^{n-1}(2^n+1)$ elations according as $\chi = \chi_1$ or χ_2 . Using this fact we can prove first that H is an irreducible subgroup, and next that H_0 is an irreducible subgroup. The final step of the identification is done using the classification theorem of irreducible subgroups of SL(2n, 2) generated by elations (transvections) due to J. McLaughlin [5].

References

- [1] E. Bannai: Doubly transitive permutation representations of the finite projective special linear groups PSL(n,q) (to appear in the Osaka J. Math.).
- [2] C. W. Curtis, N. Iwahori, and R. Kilmoyer: Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs (to appear in the Publ. I. H. E. S.).
- [3] J. A. Green: The characters of the finite general linear groups. Trans. Amer. Math. Soc., 80, 402-447 (1955).
- [4] D. G. Higman: Intersection matrices for finite permutation groups. J. of Algebra, 6, 22-42 (1967).
- [5] J. McLaughlin: Some subgroups of $SL_n(F_2)$. Ill. J. Math., 13, 108-115 (1969).