7. The Powers of an Operator of Class \mathcal{C}_{ρ}

By Ritsuo Nakamoto
Tennoji Senior Highschool
(Comm. by Kinjirô Kunugı, m. J. A., Jan. 12, 1972)

1. In a recent paper [4], M. J. Crabb gives the best bound $\sqrt{2}$ of the inequality proposed by C. A. Berger and J. G. Stampfli [2]:

$$
\limsup _{n \rightarrow \infty}\left\|T^{n} x\right\| \leqq \sqrt{2}\|x\|
$$

for an operator T with $w(T)=1$, where $w(T)$ is the numerical radius of T given by

$$
w(T)=\sup \{|(T x, x)| ;\|x\|=1\}
$$

Using his method, he proves also a generalization of a theorem of Berger-Stampfli [3] and Williams-Crimmins [6]. In the present note, we shall give a further generalization of Crabb's theorem in an elementary method basing on an idea of C. A. Berger and J. G. Stampfli.
2. Following after B. Sz. Nagy and C. Foiaş [5], let \mathcal{C}_{ρ} be the set of all operators acting on a Hilbert space \mathscr{S} such that there exist a Hilbert space \mathfrak{R} containing \mathscr{S} as a subspace and a unitary operator U acting on \Re satisfying
(1) $\quad T^{m}=\rho P U^{m} \mid \mathscr{K} \quad(m=1,2, \cdots)$,
where P is the projection of $\mathfrak{\Re}$ onto \mathfrak{S}. (1) implies at once
(2) $\quad T^{* m}=\rho P U^{* m} \mid S_{\mathcal{S}} \quad(m=1,2, \cdots)$.

It is well-known by [5] that

$$
\mathcal{C}_{1}=\{T \in \boldsymbol{B}(\mathfrak{S}) ;\|T\| \leqq 1\}
$$

and

$$
\mathcal{C}_{2}=\left\{T \in \boldsymbol{B}\left(\mathfrak{S}_{\mathcal{C}}\right) ; w(T) \leqq 1\right\} .
$$

Therefore, the following theorem contains Crabb's theorem as a special case ($\rho=2$):

Theorem. Suppose that $T \in \mathcal{C}_{\rho}(\rho \neq 1)$ and that (3) $\quad\left\|T^{n} x\right\|=\rho$
for some integer n and a unit vector x. Then we have
(i) $T^{n+1} x=0$,
(ii) $\left\|T^{k} x\right\|=\sqrt{\rho}$ for $k=1,2, \cdots, n-1$,
(iii) $x, T x, \cdots, T^{n} x$ are mutually orthogonal,
and
(iv) The linear span \mathfrak{R} of $x, T x, \cdots, T^{n} x$ is a reducing subspace of T.
3. Proof. Ad (i). Let T be as in (1). Then

$$
\rho\|x\|=\left\|T^{n} x\right\|=\left\|\rho P U^{n} x\right\|=\rho\left\|P U^{n} x\right\| .
$$

Since U is unitary and P is a projection, we have

$$
\begin{equation*}
P U^{n} x=U^{n} x \tag{4}
\end{equation*}
$$

or $U^{n} x \in \mathscr{F}$. Hence

$$
T^{n} x=\rho U^{n} x
$$

Therefore, we have

$$
\rho P U^{n+1} x=T^{n+1} x=T\left(\rho U^{n} x\right)=(\rho P U)\left(\rho U^{n} x\right)=\rho^{2} P U^{n+1} x .
$$

Hence we have $T^{n+1} x=0$ for $\rho \neq 1$.
Ad (ii). For each $k(1 \leqq k<n)$, we have

$$
\begin{aligned}
\left\|T^{k} x\right\|^{2} & =\left(T^{k} x, T^{k} x\right)=\rho^{2}\left(P U^{k} x, P U^{k} x\right) \\
& =\rho^{2}\left(U^{n-k} P U^{k} x, U^{n} x\right) \\
& =\rho^{2}\left(P U^{n-k} P U^{k} x, U^{n} x\right) \\
& =\left(T^{n} x, U^{n} x\right) \\
& =\rho\left(P U^{n} x, U^{n} x\right) \\
& =\rho\left\|U^{n} x\right\|^{2}=\rho\|x\|^{2} .
\end{aligned}
$$

Hence $\left\|T^{k} x\right\|=\sqrt{\rho}$.
Ad (iii). Since $T^{n+j} x=0$ by (i), we have

$$
\begin{aligned}
\left(T^{i} x, T^{j} x\right) & =\rho^{2}\left(P U^{i} x, U^{j} x\right) \\
& =\rho^{2}\left(U^{n-j} P U^{i} x, U^{n} x\right) \\
& =\rho^{2}\left(P U^{n-j} P U^{i} x, U^{n} x\right) \\
& =\left(T^{n+i-j} x, U^{n} x\right)=0
\end{aligned}
$$

for every i and j such as $0 \leqq j<i \leqq n$.
Ad (iv). It is clear that \mathcal{R} is invariant under T. Therefore it suffices to prove that the vectors $x, T x, \cdots, T^{n} x$ are orthogonal to $T a$, where a is a vector in $\mathscr{S}_{\mathcal{S}}$ which is orthogonal to \mathfrak{R}.

For each $k(1 \leqq k \leqq n)$, we have

$$
\begin{aligned}
\left(T a, T^{k} x\right) & =\left(\rho P U a, \rho P U^{k} x\right) \\
& =\rho^{2}\left(P U a, U^{k} x\right) \\
& =\rho^{2}\left(U^{n-k} P U a, U^{n} x\right) \\
& =\left(T^{n-k+1} a, U^{n} x\right) \\
& =\rho\left(P U^{n-k+1} a, U^{n} x\right) \\
& =\rho\left(U^{n-k+1} a, U^{n} x\right) \\
& =\rho\left(a, U^{k-1} x\right) \\
& =\rho\left(a, P U^{k-1} x\right) \\
& =\left(a, T^{k-1} x\right)=0 .
\end{aligned}
$$

This shows that $T a$ is orthogonal to $T x, \cdots, T^{n} x$. At this end, we shall show that $T a$ is orthogonal to x. Now, we have

$$
\begin{aligned}
\left\|T^{* n} U^{n} x\right\| & =\rho\left\|P U^{* n} U^{n} x\right\| \\
& =\rho\|P x\|=\rho\|x\|=\rho .
\end{aligned}
$$

As $\|x\|=\left\|U^{n} x\right\|=1$, by (i) we have $T^{*(n+1)} U^{n} x=0$. Therefore

$$
\begin{aligned}
T^{*(n+1)} U^{n} x & =\rho P U^{*(n+1)} U^{n} x \\
& =\rho P U^{*} x=T^{*} x=0 .
\end{aligned}
$$

Hence we have finally

$$
(T a, x)=\left(a, T^{*} x\right)=0
$$

This completes the proof.

References

[1] C. A. Berger: A strange dilation theorem. Notice Amer. Math. Soc., 12, 590 (1965).
[2] C. A. Berger and J. G. Stampfli: Norm dilation and skew dilation. Acta Sci. Math. Szeged, 28, 191-195 (1967).
[3] -: Mapping theorems for the numerical range. Amer. J. Math., 89, 1047-1055 (1967).
[4] M. J. Crabb: The powers of an operator of numerical radius one. Mich. Math. J., 18, 253-256 (1971).
[5] B. Sz. Nagy and C. Foiaş: Harmonic Analysis of Operators on Hilbert Space. Akadémiai Kiadó, Budapest (1970).
[6] J. P. Williams and T. Crimmins: On the numerical radius of a linear operator. Amer. Math. Monthly, 74, 832-833 (1967).

