21. On the Topological Spaces with the \mathfrak{B} -property

By Tsugio TANI and Yoshikazu YASUI Department of Mathematics, Osaka Kyoiku University (Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1972)

Recently, P. Zenor [9] defined the topological class contained in the countably paracompact spaces. It is the generalization of C. H. Dowker ([1], Theorem 2) or F. Isikawa [2]. On the other hand, S. Sasada [7] defined the α_i -spaces (i=1,2) in addition the normality (normal \mathfrak{B} -spaces are α_i -spaces).

The purpose of this paper is to study some characterizations and properties of \mathfrak{B} -spaces. F. Isikawa [2] proved the following theorem:

Theorem 1. In order that a topological space be countably paracompact, it is necessary and sufficient that if a decreasing sequence $\{F_i | i=1, 2, \cdots\}$ of closed sets with vacuous intersection is given, then there exists a decreasing sequence $\{G_i | i=1, 2, \cdots\}$ of open sets such that $\{\overline{G_i} | i=1, 2, \cdots\}$ has a vacuous intersection and $G_i \supset F_i$ for $i=1, 2, \cdots$.

At this time, we can naturally define the \mathfrak{B} -space, that is, a topological space X is said to be a \mathfrak{B} -space if every monotone decreasing¹⁾family $\{F_{\alpha} \mid \alpha \in A\}$ of closed sets with the vacuous intersection has the monotone decreasing family $\{G_{\alpha} \mid \alpha \in A\}$ of open sets such that $\bigcap_{\alpha \in A} \overline{G_{\alpha}} = \emptyset$ and $G_{\alpha} \supset F_{\alpha}$ for each $\alpha \in A$. From the above definition, the \mathfrak{B} -property is weakly hereditary²⁾ and the following is trivial:

Proposition. In order that a topological space X be a \mathfrak{B} -space, it is necessary and sufficient that every monotone increasing¹⁾ open covering $\{G_{\alpha} | \alpha < \lambda\}$ of X has the monotone increasing open covering $\{U_{\alpha} | \alpha < \lambda\}$ of X such that $G_{\alpha} \supset \overline{U_{\alpha}}$ for each $\alpha < \lambda$.

In order to prove some theorems, we shall use the following:

Lemma. Let X be a topological space, then X is countably paracompact if and only if every monotone increasing countable open covering \mathfrak{U} of X has the σ -cushioned³⁾ open refinement.

The proof of this lemma is easily seen from Theorem 1.

Theorem 2. In a topological space X, the following properties are equivalent:

3) See E. Michael [4].

¹⁾ A family $\{F_{\alpha} | \alpha \in A\}$ of subsets of X is monotone increasing (resp. monotone decreasing) if A is well ordered and $F_{\alpha} \supset F_{\beta}$ (resp. $F_{\alpha} \subset F_{\beta}$) for each $\alpha \geq \beta$; $\alpha, \beta \in A$.

²⁾ A topological property P is said to be *weakly hereditary* if every closed subspace of X has the property P whenever X has the property P.

(1) X is a \mathfrak{B} -space.

(2) Every monotone increasing open covering of X has a cushioned open covering of X as a refinement.

(3) Every monotone increasing open covering of X has a σ -cushioned open covering of X as a refinement.

Proof. (1) *implies* (2). Let $\mathfrak{H}_{\alpha} | \alpha < \lambda$ be an arbitrary monotone increasing open covering of X where we may assume that λ is a limit ordinal number. Let $G_{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}$ for $\alpha < \lambda$, then it is easily seen that $\mathfrak{G}_{\alpha} = \{G_{\alpha} | \alpha < \lambda\}$ is a monotone increasing open covering of X such that $G_{\alpha} \subset H_{\alpha}$ for each $\alpha \in [0, \lambda)$.

Furthermore we shall show the following:

 $\bigcup_{\beta < \alpha} G_{\beta} = G_{\alpha} \text{ for any limit ordinal number } \alpha < \lambda.$

Since $\bigcup_{\beta < \alpha} G_{\beta} \subset G_{\alpha}$ is trivial, let x be any element of $G_{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}$. Then $x \in H_{\beta}$ for some $\beta < \alpha$, and hence, $x \in H_{\beta} \subset G_{\beta+1}$, where $\beta + 1 < \alpha$ follows the fact that α is a limit ordinal number, that is, $x \in \bigcup_{\beta < \alpha} G_{\beta}$.

For this monotone increasing open covering $\{G_{\alpha} | \alpha < \lambda\}$, there exists a monotone increasing open covering $\mathfrak{U} = \{U_{\alpha} | \alpha < \lambda\}$ such that $\overline{U}_{\alpha} \subset G_{\alpha}$ for each $\alpha < \lambda$. We shall show that \mathfrak{U} is a cushioned refinement of \mathfrak{G} , and hence, of \mathfrak{G} .

For this purpose, let A be an arbitrary subset of $[0, \lambda)$. If A has a maximal element or A is cofinal⁴⁾ in $[0, \lambda)$, $\bigcup_{\alpha \in A} \overline{U_{\alpha}} \subset \bigcup_{\alpha \in A} G_{\alpha}$ is trivial. Therefore we may assume that there exists a supremum α_0 of A in $[0, \lambda)$ and $\alpha_0 \notin A$. Then $\bigcup_{\alpha \in A} \overline{U_{\alpha}} \subset \overline{U_{\alpha_0}} \subset G_{\alpha_0} = \bigcup_{\alpha \in A} G_{\alpha}$ because the last inclusion follows the limit ordinality of α_0 .

From the above, $\{U_{\alpha} | \alpha < \lambda\}$ is a monotone increasing open covering of X and a cushioned refinement of $\{H_{\alpha} | \alpha < \lambda\}$.

(2) *implies* (3). It is trivial.

(3) implies (1). Let $\mathfrak{G} = \{G_{\alpha} \mid \alpha < \lambda\}$ be any monotone increasing open covering of X, then there exists a σ -cushioned open covering $\mathfrak{B} = \bigcup_{i=1}^{\infty} \mathfrak{B}_i$ where we may assume that $\mathfrak{B}_i = \{B_{\alpha}^i \mid \alpha < \lambda\}$ and $\overline{\bigcup_{\alpha \in A}} B_{\alpha}^i \subset \bigcup_{\alpha \in A} G_{\alpha}$ for any subset A of $[0, \lambda)$ and each $i=1, 2, \cdots$. Let $B_i = \bigcup \{B_{\alpha}^i \mid \alpha < \lambda\}$, then the countable paracompactness of X being clear (by the lemma), we have a locally finite countable open covering $\mathfrak{W} = \{W_i \mid i=1, 2, \cdots\}$ of X such that $\overline{W_i} \subset B_i$ for each $i=1, 2, \cdots$. It will be sufficient to find a monotone increasing open covering $\mathfrak{U} = \{U_{\alpha} \mid \alpha < \lambda\}$ of X such that $G_{\alpha} \supset \overline{U_{\alpha}}$ for each $\alpha \in [0, \lambda)$.

For this purpose we put $U_{\alpha} = \bigcup_{i=1}^{\infty} \left\{ \left(\bigcup_{\beta \leq \alpha} B^i_{\beta} \right) \cap W_i \right\}$ for each $\alpha < \lambda$.

82

⁴⁾ A is said to be cofinal in $[0, \lambda)$ if, for each $\alpha \in [0, \lambda)$, there exists some element β of A such that $\alpha \leq \beta$.

(I) $\{U_{\alpha} \mid \alpha < \lambda\}$ is a monotone increasing open covering of X. It is clear.

(II) $\overline{U}_{\alpha} \subset G_{\alpha}$ for each $\alpha < \lambda$. From the local finiteness of $\{W_i | i\}$, $\left\{ \left(\bigcup_{\beta \leq \alpha} B_{\beta}^i \right) \cap W_i | i \right\}$ is locally finite, and hence,

$$\overline{U}_{\alpha} = \bigcup_{i=1}^{\infty} \overline{\left(\bigcup_{\beta \leq \alpha} B_{\beta}^{i}\right) \cap W_{i}} \subset \bigcup_{i=1}^{\infty} \overline{\bigcup_{\beta \leq \alpha} B_{\beta}^{i}} \subseteq \bigcup_{i=1}^{\infty} \left(\bigcup_{\beta \leq \alpha} G_{\beta}\right) = \bigcup_{\beta \leq \alpha} G_{\beta} = G_{\alpha}.$$

From (I) and (II), we complete the proof of $(3) \rightarrow (1)$.

Theorem 3. In order that a topological space X be a \mathfrak{B} -space it is necessary and sufficient that every monotone increasing open covering $\{G_{\alpha} \mid \alpha < \lambda\}$ of X has the open covering $\mathfrak{U} = \bigcup_{i=1}^{\infty} \mathfrak{U}$ of X such that \mathfrak{U}_{i} $= \{U_{\alpha}^{i} \mid \alpha < \lambda\}$ is monotone increasing and $\overline{U}_{\alpha}^{i} \subset G_{\alpha}$ for each $\alpha < \lambda$ and $i=1, 2, \cdots$.

Proof. Necessity. It is trivial.

Sufficiency. Let $\mathfrak{H}_{\alpha} | \alpha < \lambda$ be any monotone increasing open covering of X. Under the same discussion of the proof of [Theorem 2: (1) \rightarrow (2)], we have the monotone increasing open covering $\mathfrak{G} = \{G_{\alpha} | \alpha < \lambda\}$ of X such that $G_{\alpha} \subset H_{\alpha}$ for each $\alpha < \lambda$ and, if $\alpha (\in [0, \lambda))$ is a limit ordinal number, then $\bigcup_{\alpha \in G_{\beta}} G_{\alpha}$.

For this monotone increasing open covering \mathfrak{G} , there exists an open covering $\mathfrak{U} = \bigcup_{i=1}^{\infty} \mathfrak{U}_i$ of X such that $\mathfrak{U}_i = \{U_a^i \mid \alpha < \lambda\}$ is monotone increasing and $\overline{U_a^i} \subset G_a$ for each $\alpha < \lambda$, each $i=1,2,\cdots$. From Theorem 2, it will be sufficient to show only the fact that \mathfrak{U}_i is cushioned in \mathfrak{G} for each $i=1,2,\cdots$. On the other hand, it is trivial by the discussion of Theorem 2: (1) \rightarrow (2), and hence it completes the proof of Theorem 3.

Let X_1, X_2, \cdots be topological spaces, then it is the interesting problem that $\prod_{i=1}^{n} X_i$ has the topological property P for each n, then $\prod_{i=1}^{\infty} X_i$ has the property P or not. It is known if P is the following classes: (1) Perfectly normal spaces (M. Katětov [3]), (2) perfectly normal and paracompact spaces (A. Okuyama [6]) and (3) perfectly normal and Lindelöf spaces (E. Michael [5]). Lastly we shall show the following:

Theorem 4. Let X_1, X_2, \dots , be topological spaces. If $\prod_{i=1}^{n} X_i$ is perfectly normal and the \mathfrak{B} -space for every $n=1, 2, \dots$, then $\prod_{i=1}^{n} X_i$ is perfectly normal and the \mathfrak{B} -space.

Proof. $X = \prod_{i=1}^{\infty} X_i$ is trivially perfectly normal (see M. Katětov [3]). Let $\mathfrak{U} = \{U_{\alpha} | \alpha < \lambda\}$ be an arbitrary increasing open covering of X, and

No. 2]

$$\begin{split} &U_{\alpha}^{n} = \bigcup \{ U \,|\, U \colon \text{ open in } \prod_{i=1}^{n} X_{i}, \, U \times \prod_{i=n+1}^{\infty} X_{i} \subset U_{\alpha}, \text{ then it is trivial that } \\ &U_{\alpha} = \bigcup_{n=1}^{\infty} \left\{ U_{\alpha}^{n} \times \prod_{i=n+1}^{\infty} X_{i} \right\} \text{ for each } \alpha < \lambda \text{ and } \{ U_{\alpha}^{n} \mid \alpha < \lambda \} \text{ is an increasing open covering of } U^{n} = \bigcup_{\alpha < \lambda} U_{\alpha}^{n}, \text{ for every } n = 1, 2, \cdots \end{split} \text{ From the perfect } \\ &\text{normality of } \prod_{i=1}^{n} X_{i}, \, U_{n} = \bigcup_{m=1}^{\infty} G_{m}^{n} \text{ for some open sets } G_{m}^{n} \text{ in } \prod_{i=1}^{n} X_{i} \text{ and } \\ &\overline{G_{m}^{n}} \subset G_{m+1}^{n}. \quad \text{Furthermore } \overline{G_{m}^{n}} \text{ being a } \mathfrak{B}\text{-space for each } m, \{ U_{\alpha}^{n} \cap \overline{G_{m}^{n}} \mid \alpha < \lambda \} \\ &\text{has the monotone increasing open (in } \overline{G_{m}^{n}} \text{ covering } \mathfrak{B}_{m}^{n} = \{ V_{n,m}^{\alpha} \mid \alpha < \lambda \} \text{ of } \\ &\overline{G_{m}^{n}} \text{ such that } \overline{V_{n,m}^{\alpha}} \left(\text{where closure in } \overline{G_{m}^{n}} \text{ and hence in } \prod_{i=1}^{n} X_{i} \right) \subset U_{\alpha}^{n} \cap \overline{G_{m}^{n}} \\ &\subset U_{\alpha}^{n}. \quad \text{If we let } \mathfrak{W}_{m}^{n} = \left\{ W_{n,m}^{\alpha} = (V_{n,m}^{\alpha} \cap G_{m}^{n}) \times \prod_{i=n+1}^{\infty} X_{i} \mid \alpha < \lambda \right\}, \text{ then it is trivial that } \\ &\overline{W_{n,m}^{\alpha}} = \overline{V_{n,m}^{\alpha} \cap \overline{G_{m}^{n}}} \times \prod_{i=n+1}^{\infty} X_{i} \subset \overline{V_{n,m}^{\alpha}} \times \prod_{i=n+1}^{\infty} X_{i} \subset U_{\alpha}^{\alpha} \times \prod_{i=n+1}^{\infty} X_{i} \subset U_{\alpha} \\ & \overline{W_{n,m}^{\alpha}} = \overline{V_{n,m}^{\alpha} \cap \overline{G_{m}^{\alpha}}} \times \prod_{i=n+1}^{\infty} X_{i} \subset U_{n}^{\alpha} \times \prod_{i=n+1}^{\infty} X_{i} \subset U_{\alpha} \\ & \end{array}$$

Next, we shall show that \mathfrak{W}_m^n is an increasing open collection for every n, m and $\bigcup_{n,m=1}^{\infty} \mathfrak{W}_m^n$ is an open covering of X. These statements are easily seen and therefore we complete the proof of Theorem 4 by Theorem 3.

Remark. (1) Clearly, \mathfrak{B} -spaces are countably paracompact spaces. But the converse is not true (see Y. Yasui [8]).

(2) In the definition of a \mathfrak{B} -space, we can not drop the condition that $\{G_{\alpha} \mid \alpha \in A\}$ is a monotone decreasing family, that is, there exists a space X such that X is not a \mathfrak{B} -space but every monotone decreasing closed collection $\{F_{\alpha} \mid \alpha \in A\}$ with vacuous intersection has the open collection $\{G_{\alpha} \mid \alpha \in A\}$ with the property that $\bigcap_{\alpha \in A} \overline{G_{\alpha}}$ is empty and $G_{\alpha} \supset F_{\alpha}$ for each $\alpha \in A$ (see Y. Yasui [8]).

(3) The product space of \mathfrak{B} -space with \mathfrak{B} -space is not necessarily \mathfrak{B} -space (see Y. Yasui [8]).

In conclusion, we express our hearty thanks to Prof. S. Hanai for his kind advices for us.

References

- C. H. Dowker: On countably paracompact spaces. Canad. J. Math., 1, 219– 224 (1951).
- [2] F. Isikawa: On countably paracompact spaces. Proc. Japan Acad., 31, 686-687 (1955).
- [3] M. Katětov: Complete normality of cartesian products. Fund. Math., 35, 271-274 (1948).
- [4] E. Michael: Yet another note on paracompact spaces. Proc. Amer. Math. Soc., 10, 309-314 (1959).

- [5] E. Michael: Paracompactness and the Lindelöf property in finite and countable cartesian products (to appear).
- [6] A. Okuyama: Some generalizations of metric spaces, their metrization theorems and products spaces. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 9, 236-254 (1968).
- [7] S. Sasada: On some classes of countably paracompact spaces. Jour. Fac. Educ. Tottori Univ., Natural Scie., 21(2), 117-127 (1970).
- [8] Y. Yasui: On the gaps between the refinements of an increasing open covering (to appear).
- [9] P. Zenor: A class of countably paracompact spaces. Proc. Amer. Math. Soc., 42, 258-262 (1970).