19. On Quasi-Fibrations over Spheres

By Seiya Sasao
Department of Mathematics, Tokyo Institute of Technology, Tokyo
(Comm. by Kenjiro Shoda, m. J. a., Feb. 12, 1972)

1. Let X be a $C W$-complex of the form $S^{k} \bigcup_{\alpha} e^{n} \bigcup_{\beta} e^{n+k} . \quad X$ is called a quasi-fibration over S^{n} if there exists a map

$$
p:\left(X, S^{n}\right) \rightarrow\left(S^{n}, p t\right)
$$

which induces homotopy isomorphisms. On the other hand we have the notion of k-spherical fibrations over S^{n} in the sense of Hurewicz.

Let $q: E \rightarrow S^{n}$ be a k-spherical fibration so that it is known that the pair $\left(E, S^{k}\right)$ has the homotopy type such as $\left(X, S^{k}\right)$. It is clear that, if (X, S^{k}) has the homotopy type of a pair $\left(E, S^{k}\right) X$ is a quasi-fibration over S^{n}. In this note we shall prove the following

Theorem 1.1. For a $C W$-complex X of the form $S^{k} \cup_{\alpha} e^{n} \bigcup_{\beta} e^{n+k}$ $(n \geqq k+2 \geqq 4)$. Let $p:\left(X, S^{k}\right) \rightarrow\left(S^{n}, p t\right)$ be a quasi-fibration. Then the pair $\left(X, S^{k}\right)$ has the homotopy type of a pair of a k-spherical fibration over S^{n}.

Remark. Probably, the condition $n \geqq k+2$ can be removed. Let $\tilde{\alpha} \in \pi_{n}\left(S^{k} \cup_{\alpha} e^{n}, S^{k}\right)$ be the generator which $\partial(\widetilde{\alpha})=\alpha$, let $\iota_{k} \in \pi_{k}\left(S^{k}\right)$ be the generator and let $i: S^{k} \rightarrow S^{k} \bigcup_{\alpha} e^{n}$ and $j: S^{k} \cup_{\alpha} e^{n} \rightarrow\left(S^{k} \cup_{\alpha} e^{n}, S^{k}\right)$ be the inclusions respectively.

For the proof of theorem we need following lemmas.
Lemma 1.2. The pair $\left(X, S^{k}\right)(n \geqq k+2 \geqq 4)$ has the homotopy type of a pair of a k-spherical fibration over S^{n} if and only if

$$
j_{*}(\beta)= \pm\left[\widetilde{\alpha}, \iota_{k}\right]_{r}
$$

where $[,]_{r}$ denotes the relative Whitehead product.
Lemma 1.3. Let $p:\left(X, S^{k}\right) \rightarrow\left(S^{n}, p t\right)$ be a quasi-fibration $(n \geqq k$ $+2 \geqq 4)$. Then we have $j_{*}(\beta)= \pm\left[\tilde{\alpha}, \iota_{k}\right]_{r}$.

It is obvious that Theorem 1.1 follows from lemmas.
Moreover, Theorem 2.1 in [1] shows that the existence of a quasifibration follows from the condition $j_{*}(\beta)= \pm\left[\tilde{\alpha}, \ell_{k}\right]_{r}$. Hence we have

Collorary 1.4. For $X=S^{k} \cup_{\alpha} e^{n} \bigcup_{\beta} e^{n+k}(n \geqq k+2 \geqq 4), X$ has the homotopy type of the total space of a k-spherical fibration over S^{n} if and only if $j_{*}(\beta)= \pm\left[\widetilde{\alpha}, \iota_{k}\right]_{r}$, or there exists a quasi-fibration $p:\left(X, S^{k}\right)$ $\rightarrow\left(S^{n}, p t\right)$.
2. In this section we shall give the proofs of lemmas. First we prove Lemma 1.3. Let $Q: S^{k} \cup_{\alpha} e^{n} \rightarrow S^{n}$ be the natural collapsing map. By a theorem of Blaker-Massy we know that

$$
\begin{equation*}
\pi_{n-1+k}\left(S^{k} \bigcup_{\alpha} e^{n}, S^{k}\right)=Z\left[\widetilde{\alpha}, \epsilon_{k}\right]_{r}+\pi_{n-1+k}\left(S^{n}\right) \tag{2.1}
\end{equation*}
$$

where the second component is determined by Q_{*}.
Suppose that there exists a quasi-fibration

$$
p:\left(X, S^{k}\right) \rightarrow\left(S^{n}, p t\right)
$$

Then it is clear that Q is extendable over X so that it holds

$$
\begin{equation*}
j_{*}(\beta)=m\left[\widetilde{\alpha}, \ell_{k}\right]_{r} \tag{2.2}
\end{equation*}
$$

for some integer m.
Consider the homotopy sequence of the tripple ($X, S^{k} \cup_{\alpha} e^{n}, S^{k}$)

$$
\pi_{n+k}\left(X, S^{k}\right) \longrightarrow \pi_{n+k}\left(X, S^{k} \bigcup_{\alpha} e^{n}\right) \xrightarrow{\partial} \pi_{n+k-1}\left(S^{k} \bigcup_{\alpha} e^{n}, S^{k}\right)
$$

$\pi_{n+k}\left(X, S^{k} \cup_{\alpha} e^{n}\right)$ is the infinite cyclic group generated by $\widetilde{\beta}$ such as $\partial \tilde{\beta}=j_{*}(\beta)$ and, by $\pi_{n+k}\left(X, S^{k}\right)=\pi_{n+k}\left(S^{n}\right), \pi_{n+k}\left(X, S^{k}\right)$ is finite so that ∂ is an isomorphism. Consider the composite of homomorphisms

$$
\pi_{n+k-1}\left(S^{k} \bigcup_{\alpha} e^{n}, S^{k}\right) \underset{i_{*}}{\longrightarrow} \pi_{n+k-1}\left(X, S^{k}\right) \underset{p_{*}}{\longrightarrow} \pi_{n+k-1}\left(S^{n}\right)
$$

Since $p_{*} i_{*}\left(\left[\widetilde{\alpha}, \iota_{k}\right]_{r}\right)=0$ and p_{*} is isomorphic so we have $i_{*}\left[\widetilde{\alpha}, \iota_{k}\right]_{r}=0$. Hence there exists an element $\gamma \in \pi_{n+k}\left(X, S^{k} \bigcup_{\alpha} e^{n}\right)$ such that

$$
\partial \gamma=\left[\tilde{\alpha}, \iota_{k}\right]_{r}
$$

Let $\gamma=s \beta$. Since $\gamma=s \beta=s j_{*}(\beta)=s m\left[\tilde{\alpha}, \iota_{k}\right]_{r}$ by (2.2) we have

$$
\left[\widetilde{\alpha}, \iota_{k}\right]_{r}=m s\left[\widetilde{\alpha}, \iota_{k}\right]_{r} .
$$

Then from (2.1), we obtain $m=+1$, i.e. the proof is completed. Secondarily we consider Lemma 1.2 . Suppose that (X, S^{k}) has the homotopy type of $\left(E, S^{k}\right)$, where $q: E \rightarrow S^{n}$ is a k-spherical fibration. As explained in § 1, there exists a $C W$-complex X_{E} of the form $S^{k} \cup_{a} e^{n} \cup_{b} e^{n+k}$ and (E, S^{k}) has the homotopy type of $\left(X_{E}, S^{k}\right)$. By (4.1) of 2, we have

$$
\begin{equation*}
j_{*}(\widetilde{b})=+\left[\widetilde{a}, \iota_{k}\right]_{r} . \tag{2.3}
\end{equation*}
$$

Let $w:\left(X, S^{k}\right) \rightarrow\left(X_{E}, S^{k}\right)$ be the homotopy equivalence by assumption. It is trivial that $w_{*}\left(\iota_{k}\right)= \pm \iota_{k}, w_{*}(\widetilde{\alpha})= \pm \widetilde{a}$ and $w_{*}(\beta)= \pm \widetilde{b}$. Hence, by (2.3), we have

$$
\begin{aligned}
w_{*} j_{*}(\beta) & =j_{*} w_{*}(\beta)= \pm j_{*}(\tilde{b})= \pm\left[\tilde{\alpha}, \iota_{k}\right]_{r} \\
& = \pm\left[w_{*}(\widetilde{\alpha}), w_{*}\left(\iota_{k}\right)\right]_{r}= \pm w_{*}\left[\widetilde{\alpha}, \iota_{k}\right]_{r}
\end{aligned}
$$

Since w_{*} is isomorphic we obtain $j_{*}(\beta)= \pm\left[\alpha, \iota_{k}\right]_{r}$.
Next we assume that $j_{*}(\beta)= \pm\left[\tilde{\alpha}, \iota_{k}\right]_{r}$ for X. Let G_{k} be the space consisted of homotopy equivalences of S^{k} with degree 1 and let $p_{k}: G_{k} \rightarrow$ S^{k} be the canonical fibration with the fibre F_{k}. Since $0=\Delta j_{*}(\beta)= \pm\left[\alpha, \iota_{k}\right]$ there exists an element $\chi \in \pi_{n-1}\left(G_{k}\right)$ such that $p_{k}(\chi)=\alpha$ by Lemma 1.1 in [2]. Let $q_{\chi}: E_{\chi} \rightarrow S^{n}$ be the k-spherical fibering with the characteristic class χ. Then $K_{\chi}=S^{k} \cup_{\alpha} e^{n} \cup_{r} e^{n+k}$. Consider the homotopy sequence of the pair $\left(S^{k} \bigcup_{\alpha} e^{n}, S^{k}\right)$

$$
\pi_{n-1+k}\left(S^{k}\right) \underset{i_{*}}{\longrightarrow} \pi_{n-1+k}\left(S^{k} \bigcup_{\alpha} e^{n}\right) \underset{j_{*}}{\longrightarrow} \pi_{n-1+k}\left(S^{k} \bigcup_{\alpha} e^{n}, S^{k}\right)
$$

By suitable orientations we have

$$
j_{*}(\beta)-j_{*}(\gamma)=\left[\widetilde{\alpha}, \iota_{k}\right]_{r}-\left[\widetilde{\alpha}, \iota_{k}\right]_{r}=0
$$

Hence there exists an element $\sigma \in \pi_{n-1+k}\left(S^{k}\right)$ such that

$$
\begin{equation*}
i_{*}(\sigma)+\gamma=\beta \tag{2.4}
\end{equation*}
$$

Let $\tau \in \pi_{n-1}\left(G_{k}\right), \xi \in \pi_{n-1}\left(F_{k}\right)$ and K_{τ}, K_{ξ} be the complexes which are obtained from the k-spherical fibering with the characteristic class τ, ξ respectively. Let $\alpha_{\tau}, \gamma_{\tau}$ be the attaching class for the complex K such as α, γ for K_{x} and let $\tau^{\prime}=\tau+i_{k_{*}}(\xi)$, where $i_{k}: F_{k} \rightarrow G_{k}$ is the inclusion. Since $p_{k_{*}}\left(\tau^{\prime}\right)=p_{k_{*}}(\tau), \gamma_{\tau}$ and $\gamma_{\tau^{\prime}}$ are elements of $\pi_{n-1+k}\left(S^{k} \bigcup_{\mu} e^{n}\right)$, where $\mu=p_{k_{*}}(\tau)$. Then we have

Lemma 2.1. Let $\lambda: \pi_{n-1}\left(F_{k}\right) \rightarrow \pi_{n-1+k}\left(S^{k}\right)$ be the isomorphism defined by B. Steer [4] then it holds $\gamma_{\tau^{\prime}}=\gamma_{\tau}+\lambda(\xi)$.

For let $h: S^{n} \rightarrow S_{1}^{n} \vee S_{2}^{n}$ be a map with type (1.1) and let

$$
P: E \rightarrow S_{1}^{n} \vee S_{2}^{n}
$$

be a k-spherical fibering whose restrictions satisfy $P \mid S_{1}^{n}=p_{i_{k *}}(\xi)$, and $P \mid S_{2}^{n}=p_{\tau}$. The fibration induced from E by h is clearly the fibration with the characteristic class τ^{\prime}. Let $H: K_{\tau^{\prime}} \rightarrow E_{E}$ be the map induced by h. Obviously we have

$$
\begin{equation*}
H_{*}\left(\gamma_{\tau^{\prime}}\right)=i_{*}^{1}\left(\gamma_{\tau}\right)+i_{*}^{2}\left(\gamma_{i_{k *}(\xi)}\right) \tag{2.5}
\end{equation*}
$$

where i^{1} and i^{2} denote inclusions: $e_{1}^{n} \cup S^{k}, S^{k} \cup e_{2}^{n} \rightarrow e_{1}^{n} \bigcup_{\alpha \xi^{\prime}} S^{k} \bigcup_{\alpha_{\varepsilon}} e_{2}^{n}$ and $\xi^{\prime}=i_{k_{*}}(\xi)$. Since K_{E} has a decomposition

$$
e_{1}^{n+k} \bigcup_{\xi^{\prime}} e_{1}^{n} \bigcup_{\alpha_{\xi^{\prime}}} S^{k} \bigcup_{\alpha_{\tau}} e_{2}^{n} \bigcup_{r_{\tau}} e_{2}^{n+k}
$$

and $\alpha_{\xi^{\prime}}=p_{k_{*}}\left(\xi^{\prime}\right)=p_{k_{*}}\left(i_{k_{*}}(\xi)\right)=0, S^{k} \bigcup_{\alpha^{\prime}} e^{n}=S^{k} \bigcup_{\alpha_{\tau}} e^{n}$ is a retract of $e_{1}^{n} \bigcup_{\alpha_{\xi}} S^{k} \bigcup_{\alpha_{\tau}} e_{2}^{n}$. By applying the retraction to (2.5) we obtain

$$
\gamma_{z^{\prime}}=\gamma_{\tau}+\lambda(\xi)
$$

from Lemma 3.2 in [2] (it states that $\gamma_{\xi^{\prime}}=\lambda(\xi)+\left[\iota_{k}, \iota_{n}\right]$).
3. Addendum. In $\S 1$ we noted that the condition $n \geqq k+2$ was probably removed. In fact, if $\alpha=0\left(X=S^{k} \vee S^{n} \cup_{\beta} e^{n+k}\right)$ and there exists a quasi-fibration $p:\left(X, S^{n}\right) \rightarrow\left(S^{n}, p t\right), X$ has the homotopy type of a total space of a k-spherical fibering over S^{n}. This is so if $2 \leqq n \leqq k$. The proof is as follows; Since

$$
\pi_{n-1+k}\left(S^{k} \vee S^{n}\right)=\pi_{n-1+k}\left(S^{k}\right)+\pi_{n-1+k}\left(S^{n}\right)+Z\left[\iota_{k}, \iota_{n}\right]
$$

we have $\beta=\beta_{1}+\beta_{2}+m\left[\iota_{k}, \iota_{n}\right]$ for $\beta_{1} \in \pi_{n-1+k}\left(S^{k}\right), \beta_{2} \in \pi_{n-1+k}\left(S^{n}\right)$ and some integer m.

The existence of p shows that the second component β_{2} vanishes. Now, from the commutative diagram (exact)

we can obtain $m= \pm 1$. By choosing a suitable orientation we can suppose that $\beta=\beta_{1}+\left[\iota_{k}, \iota_{n}\right]$. Let $q: E \rightarrow S^{n}$ be the k-spherical fibering with the characteristic class $\lambda^{-1}\left(\beta_{1}\right)$. Then by Lemma 3.2 in [2] E has the same homotopy type as X.

References

[1] P. J. Hilton and J. Roitberg: On Quasi-fibrations and Orthogonal Bundles. Lecture notes in Math., 196 (1971).
[2] S. Sasao: On homotopy type of k-spherical fiberings over spheres (to appear).
[3] J. D. Stasheff: A classification theorem for fiber spaces. Topology, 2, 239-246 (1963).
[4] B. Steer: Extensions of mappings into H-spaces. Proc. Lond. Math. Soc., 13(3), 219-272 (1963).

