14. A Note on Schütte's Interpolation Theorem

By Nobuyoshi Мотонashi
(Comm. by Kunihiko Kodaira, m. J. A., Feb. 12, 1972)

In this note, we shall add some remarks on Schütte's interpolation theorem in the intuitionistic predicate logic (cf. Schütte [3]), one of which give an affirmative solution of one of open problems in Gabbay [1].

Schütte's interpolation theorem. If $A \supset B$ is provable in the intuitionistic predicate logic, then there is a formula C satisfying the following (1) and (2):
(1) $A \supset C$ and $C \supset B$ are provable in this logic.
(2) Every predicate symbol in C occurs both in A and in B.

We add the following fact to this theorem:
Theorem. In Schütte's theorem above, if A and B are built up using \neg (negation), \wedge (conjunction) and \forall (universal quantification) only, then we can take such a C which satisfies (1), (2) and an added condition (3) :
(3) Every free variable in C occurs both in A and in B.

Remark 1. The proposition obtained from the above theorem by omitting (3) is an affirmative solution of one of open problems in [1].

Remark 2. In Schütte's theorem, we can easily add the condition (3) to C, but in our theorem this is not trivial because we can not apply \exists (existential quantifier) to C.

Let $L J$ be the intuitionistic predicate logic formulated by Gentzen in [2]. For the sake of simplicity we assume that a sequent in $L J$ is of the form $\Gamma \rightarrow \Theta$, where Γ and Θ are finite sets of formulas in $L J$ and Θ has at most one formula, although we shall write $A, \Gamma \rightarrow B$ instead of $\{A\} \cup \Gamma \rightarrow\{B\}$. Furthermore we assume that $L J$ has two propositional constants T (truth), \perp (false) and two added axiom sequents $\rightarrow T$ and $\perp \rightarrow$.

Lemma 1. Let $\Gamma \rightarrow \Theta$ be a sequent in $L J$ and $\left(\Gamma_{1}, \Gamma_{2}\right)$ be an ordered partition of Γ. If $\vdash_{{ }_{J J}} \Gamma \rightarrow \Theta$, then there is a formula C such that
(4) $\vdash^{{ }_{L J}} \Gamma_{1} \rightarrow C$ and $\vdash^{L J} C, \Gamma_{2} \rightarrow \Theta$.
(5) Every predicate symbol in C occurs both in Γ_{1} and $\Gamma_{2} \cup \Theta$.

Furthermore if every formula in $\Gamma \cup \Theta$ is built up using \neg, \wedge, \forall only, then C is also such a formula.
Proof. We use the induction on a cut-free derivation \mathscr{D} of $\Gamma \rightarrow \Theta$. We only treat the case that the last rule of \mathscr{D} is $(\neg \rightarrow)$ or $(\rightarrow \forall)$.

Case 1. The last rule of \mathscr{D} is $(\neg \rightarrow)$. Then \mathscr{D} has the form

$$
(\neg \rightarrow) \frac{\Gamma \stackrel{\downarrow}{\downarrow} A}{\neg A, \Gamma \rightarrow} .
$$

If we divide $\neg A, \Gamma$ by $\left(\{\neg A\} \cup \Gamma_{1}, \Gamma_{2}\right)$, then by the hypothesis of induction there is a formula C_{1} satisfying (4), (5) for the sequent $\Gamma \rightarrow A$ and the partition $\left(\Gamma_{2}, \Gamma_{1}\right)$. Let $C=\neg C_{1}$.

If we divide $\neg A, \Gamma$ by ($\Gamma_{1},\{\neg A\} \cup \Gamma_{2}$), then by the hypothesis of induction, there is a formula C_{1} satisfying (4), (5) for the sequent $\Gamma \rightarrow A$ and the partition $\left(\Gamma_{1}, \Gamma_{2}\right)$. Let $C=C_{1}$.

Case 2. The last rule of \mathscr{D} is $(\rightarrow \forall)$. Then \mathscr{D} has the form

$$
(\rightarrow \forall) \frac{\Gamma \xrightarrow{\downarrow} A(a)}{\Gamma \rightarrow(\forall v) A(v)}, \quad \begin{aligned}
& a \text { does not occur in } \\
& \text { the lower sequent. }
\end{aligned}
$$

Let $\left(\Gamma_{1}, \Gamma_{2}\right)$ be an ordered partition of Γ. By the hypothesis of induction there is a formula $C_{1}(\alpha)$ satisfying (4), (5) for the sequent $\Gamma \rightarrow A(a)$ and the partition $\left(\Gamma_{1}, \Gamma_{2}\right)$. Let $C=(\forall v) C_{1}(v)$.
Q.E.D.

Lemma 2. If A and B are built up using \neg, \wedge, \forall only and $\vdash^{L J}$ $A \rightarrow B$, then there is a formula C such that
(6) $\vdash_{L_{J}} A \supset C$ and $\vdash_{{ }_{L J}} C \supset B$.
(7) Every predicate symbol in C occurs in A.
(8) Every free variable in C occurs both in A and in B.
(9) C is built up using $ᄀ, \wedge, \forall$ only.

Proof. By the induction on B.
Case 1. B is an atomic formula. If B is \top or \perp, obvious. If B $=P\left(a_{1}, \cdots, a_{n}\right)$ and P does not occur in A, then let $C=\perp$. If $B=P\left(a_{1}\right.$, \cdots, a_{n}) and P occur in A, let C be the formula obtained from B by applying \forall to every free variable in B which does not occur in A.

Case 2. B is $\neg B_{1}$. Since $\vdash^{L}{ }_{J} A \rightarrow B$, we have $\vdash^{L_{J}} B_{1}, A \rightarrow$. Let a_{1}, \cdots, a_{n} be the set of free variables in A which do not appear in B and $C=\neg\left(\forall v_{1}\right) \cdots\left(\forall v_{n}\right) \neg A\left(v_{1}, \cdots, v_{n}\right)$, where $A=A\left(a_{1}, \cdots, a_{n}\right)$.

Case 3. B is $B_{1} \wedge B_{2}$. Since $\vdash^{L}{ }_{J} A \rightarrow B_{1} \wedge B_{2}$ we have $\vdash^{L J} A \rightarrow B_{1}$ and $\vdash_{L_{J}} A \rightarrow B_{2}$. By the hypotheses of induction, there are formulas C_{1}, C_{2} satisfying (6)-(9) for $A \rightarrow B_{1}$ and $A \rightarrow B_{2}$. Let $C=C_{1} \wedge C_{2}$.

Case 4. B is $(\forall v) B_{1}(v)$. Let a be a free variable not in A, B. Since $\vdash^{L}{ }_{J} A \rightarrow(\forall v) B_{1}(v)$, we have $\vdash_{{ }_{J J}} A \rightarrow B_{1}(a)$. By the hypothesis of induction, there is a C_{1} satisfying (6)-(9) for $A \rightarrow B_{1}(a)$. Let $C=C_{1}$.

Q.E.D.

The proof of Schütte's theorem is obvious from Lemma 1. Assume that A and B are built up using \neg, \wedge, \forall only and $\vdash_{L_{J}} A \rightarrow B$. Then by Lemma 1, there is such a formula C_{1} satisfying (1), (2). By applying \forall, we can assume that every free variable in C_{1} occurs in A. Then by using Lemma 2 to $\vdash^{L}{ }_{J} C_{1} \rightarrow B$, there is a formula C satisfying (6)-(9) for the sequent $C_{1} \rightarrow B$.

Then clearly this C satisfies (1), (2) and (3).

Hence our theorem has been proved.

References

[1] D. M. Gabbay: Semantic proof of Craig's interpolation theorem for intuitionistic logic and extensions, Part II. Manchester Proc. (North-Holland Publ. Co.), 403-410 (1969).
[2] G. Gentzen: Untersuchungen über das logische Schliessen. Math. Zeitschr., 39, 176-210, 405-431 (1934).
[3] K. Schütte: Der Interpolations-satz der intuitionistischen Pradikatenlogik. Math. Annalen, 148, 192-200 (1962).

