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1. In the previous note [9], one of the authors discussed, jointly
with Yamada, the mutual dependency of several dilation theorems.
Especially, it is pointed out that Stinespring-Umegaki’s algebra dila-
tion theorem implies the so-called strong dilation theorem of Sz.-Nagy.
However, the proofs of the implication are somewhat lengthy. In the
present note, it will be shown that Stinespring-Umegaki’s theorem
can serve a proof of more general dilation theorem of Foia-Suciu [2].
Some consequences are also discussed.

2. The following theorem is the algebra dilation theorem due to
[7] and [10]:

Theorem 1 (Stinespring-Umegaki). If V is a completely positive
(or positive definite)linear mapping defined on a unital C*-algebra B
with the range in the algebra B(H) of all operators on a Hilbert space
H, and V satisfies V1---1, then there is a (.-preserq;ing) representation
U of B on K such that
(1) Vf--pUf[H
for any f e B, where K includes H as a subspace and p is the projection

of K onto H.
In the present note, the notion of the complete positivity is not

necessary, since Stinespring [7; Theorem 4] established that the com-
plete positivity coincides with the usual positivity i B is commutative
which is the case treated in this note. Exactly, in the present note, B
is always the algebra C(X) of all continuous unctions defined on a
compact Hausdorff space X equipped with the sup-norm.

3. A subalgebra A of C(X) is a function algebra on X if A
satisfies
(i) A contains the constants, and
(ii) A separates the points of X.
A function algebra A is a Dirichlet algebra on X if the real part Re A
of all real parts of unctions belonging to A is dense in the algebra of
all real continuous functions on X.

An operator representation V o a function algebra A on a Hilbert
space H is an algebra homomorphism of A into B(H) which satisfies
(2) Vl=l
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and
(a)
for all f A. In he recen decade, he heory of operator representa-
tions is advanced by Foia, Mlak, Suciu and their colleagues. Follow-
ing general heorem for Dirichle algebras is proved in [2; Theorem 6]"

Theorem 2 (Foia-Suciu). I V is an operator epresentation of
a Dirichlet algebra A on H, then theve is a (.-pvesevving) representa-
tion of C(X) into B(K) which satisfies (1).

4. Comparing Theorem 2 with Theorem 1, one can easily deduce,
the key of the present note lies in the fact that the operator representa-
tion V of A is extensible to a positive linear map W on C(X); that is,
the following diagram becomes commutative"

C(x) U---B(K)

A ---->B(H).
For the extension of V to C(X), a natural task is to define

( 5 ) W(Re f)-Re Vf.
By the cartesean decomposition of a function of C(X) and the Dirichle-
arity of A, the mapping is defined if
( 6 ) Re f---0 Re Vf--O.
However, (6) is contained in
( 7 ) Re f 0 Re Vf>= O,
which is nothing but the positivity of W.

5. A simple and elegant proof of (7) is established by Foia-
Suciu [2]. Their proof, is based on a fact pointed out by von Neumann
[5; 5.2 (23)]"
( 8 ) Re T__>0 4::::> II(T+
for every 9 e H, which follows from
(9) 4Re(Tglg)=il(T+l)gli2--11(V--1)9112.

If Re f>_0, then f/l is invertible. If A is a Banach algebra,

then (f/ 1)- e A by the Gelfand theory, and

(10) g_f--1 eA.
f+l

Since Re f=>0, [Ig[I_l and f-l=g(f+l). Since V satisfies (3),
[[ (Vf-- 1)9I =11Vg(Vf+ 1)9l I_<_ II (Vf+

which proves (8) and so (7).
6. The original proof of, Foia-Suciu [2] appealed the Naimark

lattice dilation theorem which leaves some distancefrom (7) hence the
above proof based on the Stinespring-Umegaki algebra dilation theorem
is shorter and simpler.

Since the disk algebra is a Dirichlet algebra, the natural repre-
sentation by a contraction T such as
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(11) Vf f(T)
is dilatable by Theorem 2, which is in urn the Sz.-Nagy strong dila-
tion theorem, being taken as
(12) f(z) z (m 0, 1, 2, ).

If the algebra is not complete, then there is a slight trouble. In
the usual way, A is completed and V is extended by the help of (3).
However, sometimes, (10) is directly deducible, for example, if A is
the algebra of all bounded rational functions.

Furthermore, by (8), (7) is deducible if V satisfies
(13) ]fl<=lgl IlVfgl]<=IIVgg]I (9 e H).
The regular representation satisfies (13).

7. In the below, a few application of the theorem of Foia-Sucin
will be discussed.

According o yon Neumann [5], a (closed) set S of the complex
numbers is a spectral set for an operator T if IIf(T) Jl=<l for any
rational function f with [lfll=<l where the norm o f is the sup-norm
on S.

If A is the algebra of all rational functions whose poles are not in
S equipped with the sup-norm on S, then the definition is equivalent to
state that (11) gives an operator representation of A on H. Hence the
theorem of Foia-Suciu is applicable in the following theorem due to
[4 ;III, Theorem 2]"

Theorem 3 (Lebow). If A is a Dirichlet algebra of ational func-
tions without poles in a spectral set X of T, then there exists a strong
normal dilation N of T with a(N)c 3X, where a(N) is the spectrum of
N and X is the boundary of X.

Being used f in (12), if N-Uf, then N is normal since N lies in
the homomorphic image of a commutative C*-algebra, so that the first
half of the theorem follows. Since a character on the image induces a
character on C(3X), a(N) is contained in the range of f on 3X; hence
a(N)X.

8. I a representation V of A is dilated in Theorem 2, then every
funetionM p on B(H) is transformed by U’P* on C(X). Since P and
U are contractive, I] U*P*plI<=I[p[I Especially, if P-9(R)+ for 9, + e H
defined by
(14) 9(R)(S)- ($9 +) (S e B(H)),
then p corresponds to a dyad on H and 9(R)+ 9 + hence p(9, )

U*P*(9(R)q) is a regular Borel measure on X and satisfies

(15) .[xfd/2(9, ) (Vfl q)

and
(16) (, +)tl<=llllll+ll
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Conversely, if (15) and (16) are satisfied, then

Vfll.__-f
so that Vf < f for every f e A, which proves

Theorem 4. If A is a Diriehle algebra on X, and V is a homo-
morphism of A into B(H) satisfying (2). Then V is an operator rep-
resentation of A on H if and only if there is a regular Borel measure
(o, 4x) for every pair of and in H which satisfies (15) and (16).

Theorem 4 is a slight generalization of a theorem of Lebow [4; I,
Theorem 1] which gives a necessary and sufficient condition or a
spectral set o an operator.

9. The following well-known theorem is a main result in [5]"
Theorem 5 (von Neumann). The unit disk is a spectral set for a

contraction.
In several occasions, cL [8], the strong dilation theorem implies

yon Neumann’s. However, the converse is also true under the light

of Foia-Suciu’s theorem.
If T is a contraction on H, then Theorems 2 and 5 imply that there

is a normal strong dilation U of T with a(U) in the unit circle, so that
U is a strong unitary dilation of T.

1 0. The numerical range
(17) W(T)-{(TI) IIII--1}
of an operator T presents an opportunity of an another application of
the general dilation theorem. Following after the naming of Fujii [3],
an operator T is a numeroid if the closure W(T) of the numerical range
of T is a spectral set for T. Then the dilation theorem implies there
is a strong normal dilation N oi T satisfying a(N)c3 W(T), so that

W(T)c W(N) =eonv a(N)c eonv 3 W(T)c W(T)
by the convexity of W(T), where eonv S is the convex hull oi S. Hence
(18) W(T)= W(N).
This is the proof of the necessity part of the following theorem due to
[6]"

Theorem 6 (Schreiber). T is a numeroid if and only if there is a
strong normal dilation N which satisfies (18).

The following proof of the sufficiency is somewhat simpler than
the original in [6]. Since the numerical range is convex and does not
separate the plane, it is enough to prove that IIq(T)l]<=llqll for every
polynomial q by [4; p. 66]. Since N is a strong normal dilation of T,
it is easy to check that q(N) is a normal dilation of q(T), so that
q(T)I1<_11 q(N)I1<=11 qll by the spectral theorem.

1 1. If the algebr A of all rational functions with no poles in X
is dense in C(X), then X is called verdinnt in the sense of von
Neumann [5; 6. 4-6.5]. If X is "verdfinnt" and V is an operator
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representation of a function algebra A on X, then V is directly ex-
tended to C(X). By (7), if f_>_0, then

Vf-- V Re f Re Vf>= O,
or V is positive on C(X), so that V is a .-representation of C(X) on H.
Hence VC(X) consists of normal operators. This shows

Theorem 7 (von Neumann). If T has a "verdinnt" spectral set,
then T is normal.

The converse of the theorem is not true. It seems impossible that
normal operators are characterized by purely spectral set terms.

12. Finally, an application of the theory of spectral sets on rep-
resentations of C*-algebras will be considered"

Theorem 8. A C*-algebra A is isometrically isomorphic to the
algebra B(E) of all operators on a Banach space E if and only if A is
a factor of type I.

If A is a factor of type I, then A is isometrically isomorphic with
B(H), so that the sufficiency is trivial. To prove the converse, it is
remarked at first that the notion of spectral sets is not restricted on
operators of Hilbert space. For any a e A with all 1, the unit disk
is a spectral set for a by Theorem 5 being considered as an operator
on a suitable Hilbert space; hence the hypothesis implies that the unit
disk is a spectral set for any contractive operator on E. On the other
hand, Foia [1; Theorem 2] established that E is a Hilbert space if
each contractive operator on E has the unit disk as a spectral set.
Hence Theorem 8 is proved.

Theorem 8 credits us, it is impossible that a factor of type II o,r

III is represented isomorphically and isometrically by the algebra of
all operators on a suitably chosen Banach space.
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