84. Rigidity for Elliptic Isometric Imbeddings

By Noboru TANAKA Kyoto University

(Comm. by Kôsaku Yosida, M. J. A., June 2, 1972)

Introduction. We say that an isometric imbedding f of a Riemannian manifold M to the Euclidean space R^m is elliptic if the imbedding f is generic in a suitable sense and if the differential operator L associated with f is elliptic. We then establish a rigidity theorem (Theorem 2) for elliptic isometric imbeddings of compact Riemannian manifolds to R^m . Furthermore we apply this result to the rigidity problem associated with the canonical isometric imbedding f of a compact hermitian symmetric space M=G/H to the Euclidean space R^m , where $m=\dim G$ (see Theorems 3 and 4). Theorem 4 partially generalizes the classical theorem of Cohn-Vossen.

1. Throughout the present paper we shall always assume the differentiability of class C^{∞} .

Let M be an n-dimensional manifold. T denotes the tangent bundle of M and T^* its dual. S^2T^* denotes the vector bundle of symmetric tensors of type $\binom{0}{2}$ on M. Given a vector bundle E on M, $\Gamma(E)$ denotes the space of cross-sections of E. Let R^m be the m-dimensional Euclidean space. $\langle \; , \; \rangle$ denotes the inner product on R^m as a Euclidean vector space.

Let $\Gamma(M, m)$ be the vector space of all the maps u of M to \mathbb{R}^m and \mathfrak{E} the subset of $\Gamma(M, m)$ consisting of all the imbeddings f of M to \mathbb{R}^m . We assume $\mathfrak{E} \neq \phi$. For any $f \in \mathfrak{E}$, we denote by $\Phi(f)$ the Riemannian metric on M induced by the imbedding f:

$$\Phi(f) = \langle df, df \rangle = \sum_{k} (df_k)^2,$$

where $f = (f_1, \dots, f_m)$. Then the assignment $f \to \Phi(f)$ gives a map Φ of the set $\mathfrak E$ to the set $\mathfrak M$ of all the Riemannian metrics on M. For any $f \in \mathfrak E$, we define a differential operator Φ_{*f} of $\Gamma(M, m)$ to $\Gamma(S^2T^*)$, the differential of the map Φ at f, by

$$\Phi_{*f}(\mathbf{u}) = 2\langle df, d\mathbf{u} \rangle \ (\mathbf{u} \in \Gamma(M, m)).$$

2. Let f be an imbedding of M to \mathbb{R}^m . We put $\nu = \Phi(f)$. Let N be the normal vector bundle on M associated with the imbedding f; the fibre N_p over a point p of M may be identified with a subspace of the Euclidean vector space \mathbb{R}^m . It is well known that, for any vectors $X, Y \in T_p$, the derivative $V_X V_Y f$ is in the subspace N_p of \mathbb{R}^m , where V is the covariant differentiation associated with the Riemannian metric ν .

Let us now consider the following condition (C) for the imbedding f: At each point $p \in M$, the fibre N_p of the normal bundle N is generated by the vectors of the form $V_X V_Y f(X, Y \in T_p)$.

For any $a \in N_p$, define an element θ_a of S^2T^* by

$$\theta_a(X, Y) = \langle a, \nabla_X \nabla_Y f \rangle,$$

which is usually called the second fundamental form of f in the direction a. Then we see that f satisfies condition (C) if and only if the map $\theta: N \ni a \to \theta_a \in S^2T^*$ is injective.

3. In what follows, we assume that the imbedding f satisfies condition (C). By the above remark, the image of the map θ forms a subbundle \tilde{N} of S^2T^* , which is called the bundle of second fundamental forms of f.

We define a differential operator D of $\Gamma(T^*)$ to $\Gamma(S^2T^*)$ by

$$(D\varphi)(X, Y) = (\nabla_X \varphi)(Y) + (\nabla_Y \varphi)(X) \qquad (\varphi \in \Gamma(T^*))$$

and denote by π the projection of S^2T^* onto the factor bundle S^2T^*/\tilde{N} . Then the composition $L=\pi\circ D$ is a differential operator of $\Gamma(T^*)$ to $\Gamma(S^2T^*/\tilde{N})$.

Theorem 1. Let f be an imbedding of M to R^m which satisfies condition (C), and let α be any element of $\Gamma(S^2T^*)$. Then the solutions u of the equation $\Phi_{*f}(u) = \alpha$ are in a one-to-one correspondence with the solutions φ of the equation $L\varphi = \pi\alpha$. Moreover the correspondence $u \to \varphi$ is given by the relation $\varphi = \langle u, df \rangle$.

4. Let f be as in Theorem 1. For any covector $\xi \in T_p^*$, the symbol $\sigma(D)_{\xi}: T_p^* \to S^2 T_p^*$ at ξ of the operator D is given by

$$\sigma(D)_{\xi}\eta = 2\xi \cdot \eta \qquad (\eta \in T_p^*),$$

where $\xi \cdot \eta$ is the symmetric product of ξ and η . It follows that the symbol $\sigma(L)_{\xi} : T_p^* \to S^2 T_p^* / \tilde{N}_p$ at ξ of the operator L is given by

$$\sigma(L)_{\varepsilon}\eta = 2\pi(\xi \cdot \eta).$$

We say that a subbundle of S^2T^* is elliptic if it contains no non-zero elements of the form $\xi \cdot \eta(\xi \cdot \eta \in T_v^*)$. Then we have the following

Proposition. The differential operator L associated with the imbedding f is elliptic if and only if the bundle \tilde{N} of second fundamental forms of f is elliptic.

An imbedding f of M to R^m will be called elliptic if it satisfies condition (C) and if the bundle \tilde{N} is elliptic.

5. Let us now introduce the C^3 -topology in the set \mathfrak{E} of imbeddings and denote by \mathfrak{E}_{C^3} the topological space thus obtained. For any $f \in \mathfrak{E}$, let $\rho(f)$ denote the dimension of the solution space of the equation $L\varphi=0$. Then we have

$$\rho(f) \ge \frac{1}{2}m(m+1),$$

the dimension of the Euclidean transformation group E(m) of \mathbb{R}^m .

Theorem 2. Let f be an imbedding of M to \mathbb{R}^m . We assume that M is compact, f is elliptic and that the dimension $\rho(f)$ is just equal to $\frac{1}{2}m(m+1)$. Then there exists a neighborhood U(f) of f in \mathfrak{E}_{C^s} having the following property: If $f', f'' \in U(f)$ and if $\Phi(f') = \Phi(f'')$, there exists a unique Euclidean transformation f and f such that f'' = f'.

Proof of Theorem 2 uses Theorem 1 and the theory of elliptic differential operators.

6. Let M = G/H be a hermitian symmetric homogeneous space, where G is connected. We assume that M is of compact type.

Let $\mathfrak g$ be the Lie algebra of G and B its Killing form. Note that B is negative definite. Let $\mathfrak h$ be the Lie algebra of H and $\mathfrak m$ the orthogonal complement of $\mathfrak h$ in $\mathfrak g$ with respect to B. As usual $\mathfrak m$ may be identified with the tangent space T_o to M at the origin o of the homogeneous space. This being said, there is a unique G-invariant Riemannian metric ν on M such that $\nu(X,Y)=-B(X,Y)$ $(X,Y\in T_o)$. Let I be the almost complex structure of the complex manifold M. Then it is well known that there is a unique element Z_0 of the centre of $\mathfrak h$ such that $H=\{a\in G\mid \text{ad }a\ Z_0=Z_0\}$ and such that $IX=[Z_0,X]$ $(X\in T_o)$.

Let us now define an inner product \langle , \rangle on \mathfrak{g} by $\langle X, Y \rangle = -B(X, Y)$ $(X, Y \in \mathfrak{g})$. Thus \mathfrak{g} may be considered as the Euclidean space \mathbb{R}^m , where $m = \dim \mathfrak{g}$. The map $G \ni a \to \operatorname{ad} a Z_0 \in \mathfrak{g}$ induces a map f of M to \mathfrak{g} , and it can be shown that f is an isometric imbedding of the hermitian symmetric space (M, ν) to the Euclidean space $\mathfrak{g} = \mathbb{R}^m$ (cf. Lichnerowicz, Géométrie des groupes de Transformations, Dunod, Paris, 1958).

Theorem 3. The isometric imbedding $f:(M,\nu)\to \mathfrak{g}$ satisfies condition (C) and is elliptic, and $\rho(f)$ is equal to $\frac{1}{2}m(m+1)$.

Proof of Theorem 3 needs Theorem 1, Proposition and some calculuses on the Laplacian Δ of the Kählerian manifold M.

By Theorems 2 and 3 we have

Theorem 4. Let f be the isometric imbedding of the compact hermitian symmetric space (M, ν) to the Euclidean space $g = \mathbb{R}^m$. Then there exists a neighborhood U(f) of f in \mathfrak{E}_{C^s} having the following property: If $f', f'' \in U(f)$ and if $\Phi(f') = \Phi(f'')$, there exists a unique Euclidean transformation a of g such that f'' = af'.

The detailed results together with their complete proofs will be published elsewhere.