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1. Introduction. The purpose of the present paper is to show
by a certain new approach that there is a geometric- and wave-optical
relation, in the literal sense of the word, between the classical mechanics
and the quantum mechanics by discussing, as an example and also as
an application of our approach, the problem of quasiclassical approxi-
mation for the SchrSdinger equation. Considerations about the notion
of characteristics for the SchrSdinger equation lead us to our approach.
Our method is to introduce a new real variable s and to look upon the
equation in a space of dimension larger than that of the original space
by 1 and to apply techniques of the geometric optics to the transformed
SchrSdinger equation which turns out to be a strongly hyperbolic
equation of the second order. Our new variable s has a physical
meaning as the action of a motion and leads us to a new formulation
of the classical mechanics of particles to which the classical Hamilton-
Jacobi theory is reduced.

The present paper is a brief summary of the methods and some
results. The proofs and a detailed version of some parts of the present
paper will be published in a forthcoming paper.

2. Transformation of the Schrdiner equation. Let us start
with the consideration of Maslov’s proposal concerning the notion of
characteristics for the SchrSdinger equation. Maslov [7] asked of what
type the SchrSdinger equation is and proposed to take as a characteristic
equation for the SchrSdinger equation

its corresponding Hamilton-Jacobi equation

+ V(x, t)=0.

This equation plays important roles in the W. K.B. expansion or the
SchrSdinger equation. However, this does not seem to be a natural
choice of the characteristic equation o the SchrSdinger equation or
the following reasons. First, or the Klein-Gordon equation, or



366 A. TAKESHITA [Vo1. 48,

x
acteristic equations, say, - Ox 0 as in the usual treat-

OS

_
OS -e-O, accordingmento hyperbolic equations and

to Maslov, which is the relativistic version of the Hamilton-Jacobi
equation or free particles. The second reason, which is essential, is
the fact that the characteristic polynomial or the principal symbol of
a linear partial differential operator is a polynomial defined on the
cotangential projective bundle which is identified with the set of all
contact elements of degree 1 of the manifold where the operator is
treated. Therefore any characteristic equation must be homogeneous
with respect to its cotangential coordinates, which leads us to have a

completion o the zeroes of the polynomial p(x, t,

+ V(x, t) in T*(R R) (cotangent bundle over R R). Thus we are
led to introduce a new real variable s and embed T*(R R)R into
P(T*(R R R)) (cotangential projective bundle over R R R).
With any polynomial of degree m, f=f(, ..., ) e C[, ..., ] in n
indeterminates we associate a new homogeneous polynomial f o the
same degree in (n+l) indeterminates 0, ,’",n by the relation
f=f(o, ,’.., $)=f(-;,’", _;1) and embed the zeroes of f
in R into the zeroes (--1, ,..., ) of f in pn(R) (n-dimensional real
projective space). For the Hamilton-Jacobi equation (2-2) we take a

1 + V(x, t) defined on T*(R R),polynomial p=p(x, t, ,
and by the introduction of a new real variable s and by means o the
above mentioned procedure we obtain a homogeneous polynomial

1 $+V(x,t)a which is defined ont, s, :,

P(T*(R R R)) where a is the cotangential coordinate or s and is
the counterpart of 0 in the procedure of completion mentioned above.
This procedure implies for the equation (2-1) to set- --a-, to multiply
the both sides by a and to transform the unknown by the Fourier

transformation (, t,)- -e(z’ t, )d where we set

=(z, t,---t). Now the Sehr6dinger equation is transformed into
the following

(--) -- 00
O

@1 (1 ’00 ") @ (’ )]@ O’ @ @(’ ’ )"

As for this operator we have the following
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Theorem 1. The operator 1 is a strongly hyperbolic operator of
the second order, and the pseudo-Riemannian metric on RRR
which admits as its Laplace-Beltrami operator is given by

g-- --ds. dt + (dxff V(x, t)(dty.

3. Quasiclassical approximation. The problem o quasiclassi-
cal approximation 2or the initial value problem for the SchrSdinger
equation

(3-1) i 3___ 1 --i + V(x, t), (x, t )

(3-2) (x, 0, )--0(x)exp [S0(x)1
k/ .1

is transformed to
(3-3)
(3-4)

f-0, } (x, t, s)
(x, o, s)=o(X)(s-So(x))

where is the Dirac delta-unction on the reals with its singularity at
the origin. Now we find that quasiclassical approximation is equivalent
to geometric-optical approximation. Thus the problem is reduced to
that of the resolution of singularity of the solution and so we seek
the solution of the orm (x, t, s)--(x, t, s)(s-S(x, t)) + it(x, t, s) with
smooth functions , , S satisfying (x, 0, s) 0(x), S(x, O) So(X).
Solving this problem and returning to the original (x, t)-space, we
have the ollowing

Theorem 2. We assume that (i) 0(x), So(x), V(x, t) are real-valued
smooth functions, (ii)0(x) is a rapidly decreasing function, and (iii)
So(x), V(x, t) are bounded together with their all derivatives of the first
order, and their second and the third derivatives grow at most with
the order of polynomials at infinity.

Then there exists TO such that on the time interval [-T, T] the
solution of equation (3-1), (3-2) is decomposed into the form

(x, t, )-(x, t,S(x, t))exp [-S(s, t)] + r(x, t,])

where satisfies the following two estimates
( 1 ) sup sup ]l- Cr(x, t, )ll.()< + oo

Itl_T =0

( 2 ) sup sup Il- -i- ,,(x, t, )1 < + c
It[_T 0 Xj L(R)

and the n-form given by

-(x, t,S(x, t)Y(dx-1 S dt) A A (dx----
is an invariant form of the vector field X= , I S

[ 3x

1 3S dr)
x



368 A. TAKESHITA [Vol. 48,

Remark 1o The residual term is determined by the equation

(3-5)
--2l(X, t,S(x, t)) exp [-S(x, t)]

(3-6) br(x, 0, )-- 0.
Here we set (x, t, S(x, t))-(-Y.)(x, t, S(x, t)) where

and

3t Ot Os l Ox Ox Os 2l
Remark 2. The (x, t)-space approach to the latter half of the

assertions in Theorem 2 that/2 defines an integral invariant of X has
been taken by earlier works. See G. D. Birkoff [1], P. A. Dirac [4],
]. Cartan [3]. Our (x, t, s)-space approach together with Cartan’s
theory o integral invariants will give a more general conservation lw.

Remark 3 The pseudo-Riemannian metric in Theorem 1 suggests
a possibility of geometric optical reconstruction o the classical
mechanics. For a relativistic 2ree particle with mass /, it suffices to

take g-/c{(cdt)- ,(dx)}-(ds), the corresponding equation of

which is the Klein-Gordon equation with roo. Since in a relativistic
treatment the cotangential coordinate or the variable s has a physical
meaning as (the velocity of light)(mass), we have to take g-(cdt)-- (dxff--(ds), the corresponding operator of which is the 5-

dimensional d’Alambertian.
Remark 4. The eikonal equation or/ is

ot E Oxi + V(x’ t) -o.

For a phase unction of the form S(x, t, s)-s-S(x, t) it reduces to the
usual Hamilton-Jacobi equation for S(x, t). In this sense the Hamilton-
Jacobi theory of the classical mechanics of particles is a special case of
our formulation.
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