81. Qualitative Theory of Codimension-one Foliations

By Kazuo YAMATO Nagoya University

(Comm. by Kenjiro Shoda, M. J. A., June 2, 1972)

We shall give a method of studying topological properties of integral manifolds of a completely integrable one-form.

Suppose that we are given a connected, closed (n+1)-manifold V^{n+1} of class C^4 with a nonsingular, completely integrable one-form ω of class C^3 , $n \ge 1$. As in [1], a maximal connected integral manifold of ω will be called a leaf.

1. The critical cycles Σ . For each $p \in V$, by assumption, there is a local coordinate system (x^1, \dots, x^{n+1}) of class C^3 in a neighborhood U of p such that $\omega | U = f dx^{n+1}$ for some positive-valued C^3 function fon U. Then the set $(U, f, (x^1, \dots, x^{n+1}))$ is called an \mathcal{Z} -chart (at p). Denote by Σ the set of zeros of the exterior derivative of ω , i.e., $\Sigma = \{p \in V | (d\omega)_p = 0\}$.

Let $p \in \Sigma$. Let $(U, f, (x^1, \dots, x^{n+1}))$ be an \mathcal{F} -chart at p and put $j_x^2(f) = \left(f_{ij}(x); \begin{array}{c} i \downarrow 1, \dots, n \\ j \rightarrow 1, \dots, n \end{array}\right),$ $j_x^3(f) = \left(f_{ij}(x), \begin{array}{c} \partial \\ \partial x^i \end{array} \det j_x^2(f); \begin{array}{c} i \downarrow 1, \dots, n+1 \\ j \rightarrow 1, \dots, n \end{array}\right),$

where $f_{ij}(x) = \partial^2 f(x)/\partial x^i \partial x^j$. Let $i=0, 1, \dots, n$. The point p is said to be of type (i) if the matrix $j_p^2(f)$ is nonsingular and if the number of negative eigenvalues of $j_p^2(x)$ is equal to i. We say that p is of type (*) if det $j_p^2(f) = 0$. Of course, the type of a point of Σ is well defined independently of the choice of \mathcal{F} -charts. For $\lambda = 0, 1, \dots, n$ or *, let Σ_{λ} denote the set of points of type (λ). Then we have $\Sigma = \Sigma_* \cup \Sigma_0 \cup \cdots \cup \Sigma_n$ (disjoint union).

We shall assume that ω satisfies the following condition :

(T) For any $p \in \Sigma_*$, there is an \mathcal{F} -chart $(U, f, (x^1, \dots, x^{n+1}))$ at p such that the matrix $j_p^3(f)$ is nonsingular.

One sees then that the same condition holds for any \mathcal{F} -chart at $p \in \Sigma_*$. One will also see that this condition (T) is "generic".

2. The main theorems. Assume that ω satisfies the condition (T). Then we have the following three theorems.

Theorem I. If $\Sigma_0 \neq \emptyset$ and $\Sigma_1 = \emptyset$, then there exists a C^3 fibre bundle B^{n+1} over S^1 and a C^3 diffeomorphism $h: B^{n+1} \rightarrow V^{n+1}$ such that

(i) the fibre of B^{n+1} is a connected, simply connected, closed n-manifold of class C^3 .

No. 6]

(ii) for each fibre M^n of B^{n+1} , h induces a C^3 diffeomorphism of M^n onto a leaf of V.

Theorem II. If $\Sigma_n \neq \emptyset$, $\Sigma_{n-1} = \emptyset$ and $\Sigma_0 = \emptyset$, then for any $p \in \Sigma_n$, there exists a C^3 fibre bundle \mathbb{R}^{n+1} over S^1 and a C^3 imbedding $h: \mathbb{R}^{n+1}$ $\rightarrow V^{n+1}$ such that

(i) the fibre of \mathbb{R}^{n+1} is a connected, simply connected, noncompact n-manifold of class \mathbb{C}^3 , without boundary.

(ii) for each fibre N^n of \mathbb{R}^{n+1} , h induces a \mathbb{C}^3 diffeomorphism of N^n onto a leaf of V.

(iii) there exist a finite number of compact leaves K_1, K_2, \dots, K_k , $1 \leq k < \infty$, such that $K_1 \cup \dots \cup K_k = \overline{h(R^{n+1})} - h(R^{n+1}) = \overline{L(p)} - L(p)$, where L(p) is the leaf through p.

(iv) $h(\mathbb{R}^{n+1}) \cap \Sigma_n = the connected component of \Sigma containing p.$

Theorem III. If $\Sigma_n = \emptyset$, then there exists an open dense subset V_0 of V such that for any $p \in V_0$, the leaf through p is locally everywhere dense in the sense of Reeb [1, p. 108].

Detailed proofs will appear elsewhere.

3. The veins. Let X be a C^3 vector field satisfying $\omega(X) = 1$. Put $\omega' = -\mathcal{L}_X \omega$, where \mathcal{L}_X denotes the Lie derivative with respect to X.

Lemma 3.1. For an \mathcal{F} -chart $(U, f, (x^1, \dots, x^{n+1}))$, we have

 $\omega' \mid U = \sum_{i=1}^{n} (\partial \log f / \partial x^i) dx^i + (-X(f) + \partial \log f / \partial x^{n+1} dx^{n+1}).$

This implies that for a leaf $L, \omega'|_L$ is a closed one-form on L and is defined independently of the choice of X.

Definition 3.1. Let J^{n-1} be a connected, closed (n-1)-submanifold of class C^3 in V. J^{n-1} is called a compact vein (without singularity) of (V, ω) if $\omega_x(v) = 0$ and $\omega'_x(v) = 0$ for all $x \in J^{n-1}$ and $v \in T_x(J^{n-1})$.

4. Closed one-forms and Morse theory. Let M^n be a connected complete Riemannian *n*-manifold of class C^3 , without boundary, and let α be a closed one-form of class C^2 such that every singular point is nondegenerate. For a singular point p of α , the *index* of p is defined to be the number of negative eigenvalues of the Jacobian matrix of α at p. α is said to be *proper* if the dual vector field α^* of α is complete and if there exist two families $\{E_i\}_{i \in I}$, $\{\tilde{E}_i\}_{i \in I}$ of open sets of M such that

(i) for a singular point p of α , there is $i \in I$ such that $p \in E_i \subset \tilde{E}_i$.

(ii) there exist three positive constants a_0 , b_0 , and c_0 such that (a) $\|\alpha_x\| > a_0$ for all $x \in M - \bigcup_{i \in I} E_i$, (b) dis $(E_i, M - \tilde{E}_i) > b_0$ for all $i \in I$, and (c) diam $(\tilde{E}_i) < c_0$ for all $i \in I$.

Proposition 4.1. Suppose that α is proper and has at least one singular point of index 0. Let p be the singular point of index 0. If α has no singular point of index 1, then

(i) there exists a C^3 function $f: M^n \rightarrow \mathbf{R}$ which is proper, such that $\alpha = df$.

К. ҮАМАТО

- (ii) M^n is simply connected.
- (iii) if α has no singular point of index n, then M^n is noncompact.
- (iv) the number of the singular points of index 0 is equal to one.

(v) for any $x \in M$, there exists a piecewise C^1 curve $a : [0, \tau] \to M^n$ which satisfies a(0) = p, $a(\tau) = x$, such that $\dot{a}(t) = \alpha^*_{a(t)} / \|\alpha^*_{a(t)}\|$ for $t \in [0, \tau]$ where $\alpha^*_{a(t)} \neq 0$.

This is a generalization of Reeb [1, (C, I, 9)]. Another generalization will be given in [2].

5. Lifts of tangential curves. From now on, fix a C^3 Riemann metric g of V and a C^3 vector field X satisfying $\omega(X) = 1$. Let $\omega' = - \mathcal{L}_X \omega$. Denote by $\{\varphi_s\}_{s \in \mathbb{R}}$ the one-parameter group of transformations generated by X. A continuous curve $c : [0, \tau] \rightarrow V$ is called *tangential* if the image of c is contained in a leaf. For a tangential curve c and $\eta \in \mathbb{R}$, suppose that there is a continuous function $\sigma : [0, \tau] \rightarrow \mathbb{R}$, $\eta = \sigma(0)$, such that the curve $b : [0, \tau] \rightarrow V$ defined by $b(t) = \varphi_{\sigma(t)}(c(t))$, is tangential. Then b is called the η -lift of c and σ is called the *height parameter* of the η -lift of c.

Lemma 5.1. Suppose that a C^1 tangential curve c has the η -lift for some η . Then the height parameter $s = \sigma(t)$ satisfies the following differential equation: $ds/dt = -\omega(\varphi_{s*}(c(t)))$ with initial condition $s(0) = \eta$.

Now, choose a constant κ so that

$$\kappa \! > \! \left| rac{\partial^2}{\partial s^2} \omega(arphi_{s*} v)
ight| \qquad ext{for all } v \in T_1(V)$$

and all s satisfying $|s| \le 1$, where $T_1(V)$ denotes the tangent sphere bundle of V^{n+1} .

Lemma 5.2. Let $c: [0, \tau] \rightarrow V$ be a C^1 tangential curve such that $\omega'(\dot{c}(t)) = 0$ and $\|\dot{c}(t)\| = 1$ for all $t \in [0, \tau]$. If $|\eta| < 1/(\kappa \tau + 1)$, then c has the η -lift.

6. Admissible tangential curves. Let Y be the vector field on V defined by the formulas $\omega(Y)=0$, $\omega'(v)=g(Y, v)$ for all $v \in \omega^{-1}(0)$.

Definition 6.1. A tangential curve $\alpha : [0, \tau] \rightarrow V$ is admissible if α is piecewise C^1 and if $\dot{\alpha}(t) = -Y_{\alpha(t)}/||Y_{\alpha(t)}||$ for $t \in [0, \tau]$ satisfying $Y_{\alpha(t)} \neq 0$.

Lemm 6.1. Suppose that ω satisfies the condition (T). Then there exist positive constants α_*, τ_* , such that

$$\int_{\mathfrak{a}[0,\tau]} \omega' < -\alpha_* \tau$$

for any admissible tangential curve $a: [0, \tau] \rightarrow V$ satisfying $\tau \geq \tau_*$.

Lemma 6.2. Suppose that ω satisfies the condition (T). Then there exists positive constant A such that, if $0 < \eta < 1/(\kappa A + 1)$, then any admissible tangential curve $\alpha : [0, \tau] \rightarrow V$ has the η -lift and then the height parameter σ has the following estimate: $\sigma_{-}(t) < \sigma(t) < \sigma_{+}(t)$ for any $t \in [0, \tau]$, where $\sigma_{\pm}(t)$ is defined by

$$\sigma_{\pm}(t) = \left(\exp \int_{\mathfrak{a}[0,t]} \omega' \right) / \left(\frac{1}{\eta} \mp \kappa A \right).$$

358

No. 6] Qualitative Theory of Codimension-one Foliations

7. Notes on the proofs of theorems. In order to prove Theorem I, note the following lemma and use Reeb stability theorem [1, (B, III, 11)].

Lemma 7.1. Under the same hypotheses of Theorem I, if a leaf L through a point $p \in \Sigma_0$ is noncompact, then for any $\eta_* > 0$, $\tau_* > 0$, there exist $x \in L$, $\eta \in \mathbf{R}$ satisfying $0 < \eta < \eta_*$ and an admissible tangential curve $\alpha : [0, \tau] \rightarrow V$ such that $\varphi_{\eta}(x) \in L$, $\alpha(0) = x$, $\alpha(\tau) = p$ and $\tau \ge \tau_*$.

The essential part of the proof of Theorem II is the following lemma.

Lemma 7.2. Suppose that there is a curve $\alpha : [0, \infty) \to V$ such that for each $\tau \in [0, \infty)$, the restriction $\alpha|_{[0,\tau]}$ is an admissible tangential curve. Then, under the same hypotheses of Theorem II, for almost every $t \in [0, \infty)$ there exists a compact vein J_t without singularity, such that J_t contains $\alpha(t)$ and that

 $\operatorname{diam}_{J_t}(J_t) \cdot \sigma_{-}(t) \to 0 \qquad (t \to \infty).$

For the proof of Theorem III, note the following lemma.

Lemma 7.3. Under the same hypothesis of Theorem III, for any $x \in V$ and any $\tau > 0$, there exists an admissible tangential curve $\alpha : [0, \tau] \rightarrow V$ satisfying $\alpha(\tau) = x$.

References

 G. Reeb: Sur certaines propriété topologiques des variétés feuilletées. Act. Sci. et Ind., Hermann, Paris (1952).

[2] K. Yamato: Codimension-one foliations with singularities (to appear).