108. On Exponential Semigroups. II

By Takayuki Tamura and Thomas E. Nordahl
University of California, Davis, California, U. S. A.
(Comm. by Kenjiro Shoda, m. J. A., Sept. 12, 1972)

1. Introduction. Tamura and Shafer proved in [3] the following :

Theorem 1. If S is an exponential archimedean semigroup with idempotent, then S is an ideal extension of I by N where I is the direct product of an abelian group G and a rectangular band B and N is an exponential nil-semigroup.

However, the converse is not necessarily true. For example, let $S=\{a, b, c, d\}$ be the semigroup of order 4 defined by $(x, y \in S)$

$$
x y=y \text { for } y \neq d \text { and all } x ; x d=a \text { for } x \neq c ; c d=b .
$$

S is the ideal extension of a right zero semigroup $\{a, b, c\}$ by a null semigroup of order 2. Associativity of S is easily verified, but S is not exponential:

$$
(c d)^{2}=b^{2}=b, \quad c^{2} d^{2}=c a=a
$$

The purpose of this paper is to prove Theorem 2 which characterizes exponential ideal extensions of I by N, and to give an alternate proof of the fact that I is completely simple. See the definition of the used terminology in [3] and [1]. The notation may be different from that in [1].

Theorem 2. S is an exponential archimedean semigroup with idempotent if and only if S is an ideal extension of the direct product $I=\Lambda \times G \times M$ of a left zero semigroup Λ, an abelian group G, and a right zero semigroup M by an exponential nil-semigroup N, with product determined by three partial homomorphisms $\varphi: N \backslash\{0\} \rightarrow M$, © : $N \backslash\{0\} \rightarrow G, \psi: N \backslash\{0\} \rightarrow \Lambda$ in the following manner. Let (λ, a, μ), $(\nu, b, \eta) \in \Lambda \times G \times M, s, t \in N \backslash\{0\}$.

$$
\left\{\begin{array}{l}
(\lambda, a, \mu) \cdot s=(\lambda, a(s \circlearrowleft \circlearrowleft), s \varphi) \tag{2.1}\\
s \cdot(\lambda, a, \mu)=(\psi s,(s \circlearrowleft) a, \mu) \\
(\lambda, a, \mu) \cdot(\nu, b, \eta)=(\lambda, a b, \eta) \\
s \cdot t= \begin{cases}s t & \text { if } s t \neq 0 \text { in } N \\
(\psi s,(s(\circlearrowleft)(t \circlearrowleft)), t \varphi) & \text { if } s t=0 \text { in } N\end{cases}
\end{array}\right.
$$

2. Alternate proof of complete simpleness of I. In [3] Anderson's theorem on bicyclic subsemigroup was used, but we will derive primitiveness of idempotent elements. Assume that S is an exponential archimedean semigroup. Let e be an idempotent element of S and let $I=S e S$. Since $I \subseteq S a S$ for all $a \in S, I$ is the kernel of S and hence I is simple. Let e and f be idempotents such that $e f=f e=f$. Now IeI
$=(S e S) e(S e S)=(S e)(S e S)(e S)=(S e)(S f S)(e S)=(S e S) f(S e S)=I f I$. So there exist $x^{\prime}, y^{\prime} \in I$ such that $x^{\prime} f y^{\prime}=e$. Let $x=e x^{\prime} f$ and $y=f y^{\prime} e$. Then $x y=\left(e x^{\prime} f\right)\left(f y^{\prime} e\right)=e\left(x^{\prime} f y^{\prime}\right) e=e . \quad$ Since $y=y e, y x=(y e) x=y(x y) x$ $=(y x)^{2}=y^{2} x^{2}$ by exponentiality while $x y=e$ implies $e=(x y)^{2}=(x y)(x y)$ $=x(y x) y=x\left(y^{2} x^{2}\right) y=(x y)(y x)(x y)=e(y x) e=y x$ as we have $e y=y$ and $x e$ $=x$ by $e f=f e=f$. Finally $f=e f=(y x) f=y\left(e x^{\prime} f\right) f=y\left(e x^{\prime} f\right)=y x=e$. Hence I is completely simple.
3. Preliminaries on ideal extension. Let D be a completely simple semigroup and let $D=\mathscr{M}(\Lambda, G, M ; \boldsymbol{F})$ be the Rees regular matrix representation of D where Λ is a left zero semigroup, G a group, M a right zero semigroup and F a sandwich matrix. Each element of D is expressed as

$$
(\lambda, x, \mu), \lambda \in \Lambda, x \in G, \mu \in M .
$$

The following are already known in [1], [2] or will be easily proved by readers.
(3.1) Let $h: M \rightarrow M$ and $p: M \rightarrow G$ be mappings. If we define $\varphi_{(p, h)}: D$ $\rightarrow D$ by

$$
(\lambda, x, \mu) \varphi_{(p, h)}=(\lambda, x(\mu p), \mu h)
$$

then $\varphi_{(p, h)}$ is a right translation of D. Every right translation of D is obtained in this manner, and the correspondence $(p, h) \rightarrow \varphi_{(p, h)}$ is one to one.
(3.2) Let $k: \Lambda \rightarrow \Lambda$ and $q: \Lambda \rightarrow G$ be mappings. If we define $\psi_{((k, q))}: D$ $\rightarrow D$ by

$$
\psi_{((k, q))}(\lambda, x, \mu)=(k \lambda,(q \lambda) x, \mu)
$$

then $\psi_{((k, q))}$ is a left translation of D and every left translation of D is obtained in this manner. The correspondence $((k, q)) \rightarrow \psi_{((k, q))}$ is one to one.
(3.3) Let $\boldsymbol{F}=\left(f_{\mu \lambda}\right), \mu \in M, \lambda \in \Lambda$. Then $\varphi_{(p, h)}$ is linked with $\psi_{\left(\left(k, q_{j}\right)\right.}$ if and only if

$$
(\mu p) \cdot f_{\mu h, \lambda}=f_{\mu, k \lambda} \cdot(q \lambda) \quad \text { for all } \mu \in M, \lambda \in \Lambda .
$$

In the present paper we deal with $I=\Lambda \times G \times M$ (for D) in which all $f_{\mu \lambda}$ equal to the identity e of G. Hence we have

$$
\begin{equation*}
\mu p=q \lambda \quad \text { for all } \mu \in M, \lambda \in \Lambda \tag{3.4}
\end{equation*}
$$

Thus p and q are constant mappings taking the same value in G. The p and q are denoted by p_{a} and q_{a} respectively, that is, $\mu p_{a}=a$, $q_{a} \lambda=a$ for all $\mu \in M$, all $\lambda \in \Lambda$.

$$
\begin{aligned}
& \psi_{\left(\left(k_{1}, q_{u}\right)\right)} \cdot \psi_{\left(\left(k_{2}, q_{0}\right)\right)}=\psi_{\left(\left(k_{1}-k_{2}, q_{a b}\right)\right)}, \\
& \varphi_{\left(p_{a}, h_{1}\right)} \cdot \varphi_{\left(p_{0}, h_{2}\right)}=\varphi_{\left(p_{a}, h_{1}, h_{2}\right)} .
\end{aligned}
$$

The translational hull $\mathcal{H}(I)$ of I consists of $\left(\psi_{\left(\left(k, q_{a)}\right)\right.}, \varphi_{\left(p_{a}, h_{)}\right)}\right)$and

$$
\begin{gather*}
\left(\psi_{\left(\left(k_{1}, q_{a}\right)\right),}, \varphi_{\left(p_{a}, h_{1}\right)}\right)\left(\psi_{\left(\left(k_{2}, q_{b}\right)\right),}, \varphi_{\left(p_{b}, h_{2}\right)}\right) \\
=\left(\psi_{\left(\left(k_{1} \cdot k_{2}, q_{a b)}\right),\right.} \varphi_{\left(p_{a b}, h_{1}, h_{2}\right)}\right) . \\
\varphi_{\left(p_{a}, h_{2}\right)}\left(\psi_{\left(\left(k, q_{a}\right)\right)}\right) \text { is an inner right (left) translation of } I \text { if and only } \tag{3.5}
\end{gather*}
$$

if $h(k)$ is a constant mapping. We redenote $h(k)$ by $h_{\mu_{0}}\left(k_{\lambda_{0}}\right)$, i.e. $\mu h_{\mu_{0}}$ $=\mu_{0}$ for all $\mu \in M,\left(k_{\lambda_{0}} \lambda=\lambda_{0}\right.$ for all $\left.\lambda \in \Lambda\right)$. Then $(\lambda, x, \mu) \varphi_{\left(p_{p}, h_{\mu_{0}}\right)}=(\lambda, x, \mu)$ (ξ, a, μ_{0}) for all $\xi \in \Lambda$.

$$
\psi_{\left(\left(k_{\lambda_{0}}, q_{a)}\right)\right.}(\lambda, x, \mu)=\left(\lambda_{0}, a, \eta\right)(\lambda, x, \mu) \quad \text { for all } \eta \in M .
$$

The translational hull $\mathscr{H}(I)$ is isomorphic onto the direct product $\mathscr{I}_{A} \times G \times \mathscr{I}_{M}=\left\{[k, a, h]: k \in \mathscr{I}, a \in G, h \in \mathscr{I}_{M}\right\}$ where \mathscr{I}_{A} and \mathscr{I}_{M} are the full-transformation semigroups on Λ and M respectively, under the map

$$
\left(\psi_{\left(\left(k, q_{a)}\right)\right.}, \varphi_{\left(p_{a}, h\right)}\right) \mapsto[k, a, h] .
$$

Let $\mathscr{D}(I)=\left\{\left(\psi_{\left(\left(k_{\lambda_{0}}, q_{a}\right)\right)}, \varphi_{\left(p_{a}, h_{\mu_{0}}\right)}\right): \lambda_{0} \in \Lambda, a \in G, \mu_{0} \in M\right\}$.
Since I is weakly reductive, $\mathscr{D}(I)$ is isomorphic onto I under the composition :

$$
\left(\psi_{\left(\left(k_{2_{0}}, q_{a}\right)\right)}, \varphi_{\left(p_{a}, h_{\mu_{0}}\right)}\right) \mapsto\left[k_{\lambda_{0}}, a, h_{\mu_{0}}\right] \mapsto\left(\lambda_{0}, a, \mu_{0}\right)
$$

After identifying, let $\left(\psi_{\left(\left(k, q_{a}\right)\right)}, \varphi_{\left(p_{a}, h\right)}\right)=[k, a, h]$.
4. Exponential ideal extension. Since I is weakly reductive, an ideal extension of I by N is determined by a partial homomorphism P^{*} of $N^{*}=N \backslash\{0\}$ into $\mathscr{H}(I)$ which satisfies

$$
P^{*}(s) P^{*}(t) \in \mathscr{D}(I) \quad \text { if } s, t \in N^{*} \text { and } s t=0 \text { in } N
$$

(See [1], [2]). For the notational convenience $P^{*}(s)$ is denoted by
$P^{*}(s)=\left[k^{(s)}, g^{(s)}, h^{(s)}\right] \quad$ where $\quad k^{(s)} \in \mathscr{I}_{\Lambda}, g^{(s)} \in G \quad$ and $\quad h^{(s)} \in \mathscr{I}_{M}$.
Now extend P^{*} to P on $S=I \cup N^{*}$ as follows

$$
\begin{cases}P(s)=P^{*}(s) & \text { if } s \in N^{*} \tag{4.1}\\ P(\lambda, a, \mu)=\left[k_{\lambda}, a, h_{\mu}\right. & \text { if }(\lambda, a, \mu) \in I\end{cases}
$$

where k_{λ} and h_{μ} are constant mappings. After identifying [k_{λ}, a, h_{μ}] with (λ, a, μ), the operation on S can be expressed as follows:

$$
\left\{\begin{array}{l}
(\lambda, a, \mu)(\nu, b, \eta)=(\lambda, a b, \eta)=P(\lambda, a, \mu) P(\nu, b, \eta) \tag{4.2}\\
(\lambda, a, \mu) \cdot s=\left(\lambda, a \cdot g^{(s)}, \mu h^{(s)}\right)=P(\lambda, a, \mu) P^{*}(s) \\
s(\lambda, a, \mu)=\left(k^{(s)} \lambda, g^{(s)} a, \mu\right)=P^{*}(s) P(\lambda, a, \mu) \\
s \cdot t= \begin{cases}s t & \text { if } s t \neq 0 \text { in } N \\
P^{*}(s) P^{*}(t)=\left(\lambda_{0}, a_{0}, \mu_{0}\right) & \text { (if } s t=0 \text { in } N,\left(\lambda_{0}, a_{0}, \mu_{0}\right) \\
& \text { is uniquely determined.) }\end{cases}
\end{array}\right.
$$

Accordingly

$$
\begin{cases}x y=P(x) P(y)=P(x y) & \text { if } x y \in I \tag{4.3}\\ P(x y)=P(x) P(y) & \text { for all } x, y \in S\end{cases}
$$

Thus P is a homomorphism of S into $\mathscr{D}(I)$.
Assume that we obtain an exponential ideal extension S of I by an exponential nil-semigroup N. Let $s \in N^{*}$. Since N is nil, there is a positive integer n such that $s^{n} \in I$, hence $(P(s))^{n} \in \mathscr{D}(I)$, i.e. $k^{(s) n}$ and $h^{(s) n}$ are constant mappings. Let $(P(s))^{n}=\left[k_{\lambda_{1}}, g_{1}, h_{\mu_{1}}\right]$. By exponentiality of S,

$$
((\lambda, a, \mu) \cdot s)^{n}=(\lambda, a, \mu)^{n} s^{n} \quad \text { for all }(\lambda, a, \mu) \in I, s \in N^{*} .
$$

By (4.3) we get

$$
\begin{align*}
\left(\left[k_{\lambda}, a, h_{\mu}\right]\left[k^{(s)}, g^{(s)}, h^{(s)}\right]\right)^{n} & =\left[k_{\lambda}, a g^{(s)}, h_{\mu} h^{(s)}\right]^{n} \tag{4.4}\\
& =\left[k_{\lambda},\left(a g^{(s)}\right)^{n}, h_{\mu} h^{(s)}\right] .
\end{align*}
$$

On the other hand

$$
\begin{align*}
{\left[k_{\lambda}, a, h_{\mu}\right]^{n}\left[k^{(s)}, g^{(s)}, h^{(s)}\right]^{n} } & =\left[k_{2}, a^{n}, h_{\mu}\right]\left[k_{\lambda_{1}}, g_{1}, h_{\mu_{1}}\right] \\
& =\left[k_{\lambda}, a^{n} g_{1}, h_{\mu_{1}}\right] . \tag{4.5}
\end{align*}
$$

From the equality " $(4.4)=(4.5)$ ", we have

$$
h_{\mu} h^{(s)}=h_{\mu_{1}} \quad \text { for all } \mu \in M,
$$

that is, $\quad \mu h^{(s)}=\mu_{1} \quad$ for all $\mu \in M$.
Hence $h^{(s)}$ is a constant mapping. Similarly, starting $(s \cdot(\lambda, a, \mu))^{n}$ $=s^{n}(\lambda, a, \mu)^{n}$, we can prove that $k^{(s)}$ is a constant mapping.

Consequently P^{*} induces mappings

$$
\psi: N^{*} \rightarrow \Lambda, \quad \mathscr{S}: N^{*} \rightarrow G, \quad \varphi: N^{*} \rightarrow M
$$

such that $P^{*}(s)=\left[k_{\psi s}, s \Subset, h_{s \varphi}\right] . \quad P^{*}$ is a partial homomorphism of N^{*} into $\mathscr{D}(I)$, and hence P is a homomorphism S into $\mathscr{D}(I)$. Thus we have obtained (2.1).

Conversely assume that $\psi, \mathbb{G}, \varphi$ are given and that S is defined by (2.1). The three mappings induce a partial homomorphism P^{*} of N^{*}, $P^{*}(s)=\left[k_{\psi s}, s ๔(\xi), h_{s \varphi}\right]$, and hence induces a homomorphism P of S into $\mathscr{D}(I)$ by (4.1). Associativity of S is assured by the general theory of ideal extension of a weakly reductive semigroup, and so we need only to show exponentiality of S :

$$
\begin{equation*}
(x y)^{m}=x^{m} y^{m} \quad \text { for all } x, y \in S, \text { for } m>1 \tag{4.6}
\end{equation*}
$$

First note that I is medial; hence $P(S)$ is medial.
If $x^{m} y^{m} \notin I$ then (4.6) is obtained by the exponentiality of N. If $x^{m} y^{m} \in I$, then $(x y)^{m} \in I$ and, by (4.3) and the above remark,

$$
x^{m} y^{m}=P\left(x^{m}\right) P\left(y^{m}\right)=(P(x))^{m}(P(y))^{m}
$$

$$
(x y)^{m}=P(x y)\left(P\left((x y)^{m-1}\right)\right)=P(x y)(P(x y))^{m-1}=P(x) P(y)(P(x) P(y))^{m-1}
$$

$$
=P(x) P(y)(P(x))^{m-1}(P(y))^{m-1}=P(x)(P(x))^{m-1} P(y)(P(y))^{m-1}
$$

$$
=(P(x))^{m}(P(y))^{m} .
$$

Hence (4.6) has been proved.
An ideal extension of I by N determined by a partial homomorphism $N^{*} \rightarrow \mathscr{D}(I)$ is called a strict ideal extension.

Thus we have Theorem 2^{\prime} which is a restatement of Theorem 2 and also describes the "medial" case. The medial case is an immediate consequence from the fact that $P(S)$ is medial.

Theorem 2^{\prime}. S is an exponential (medial) archimedean semigroup with idempotent if and only if S is a strict ideal extension of the direct product of an abelian group G and a rectangular band B by an exponential (medial) nil-semigroup N.

Finally we exhibit an example of exponential semigroup which is not medial. It is sufficient to show such a nil-semigroup. Let F be the free semigroup generated by two letters a, b and let S^{*} be a subset of F defined by
and

$$
S^{*}=\left\{a, b, a b, a^{2}, b a, a^{2} b, a b a, a^{2} b a\right\}
$$

Then I is an ideal of F. Let $S=F / I . \quad S$ is an exponential semigroup of order 9 which is not medial since $a^{2} b a \neq a b a^{2}=0$.

References

[1] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups, Vol. 1. Survey 7, Amer. Math. Soc., Providence, R. I. (1961).
[2] M. Petrich: The translational hull in semigroups and rings. Semigroup Forum, 1 (4), 283-360 (1970).
[3] T. Tamura and J. Shafer: On exponential semigroups. I. Proc. Japan Acad., 48, 77-80 (1972).

