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100. On Surfaces of Class VIIo
By Masahisa INOUE

(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1972)

1. In this short note we consider the surfaces satisfying the
following conditions"
( ) b--l, b--0; the surfaces contain no curves.
We give two kinds of examples satisfying (.), and give a theorem which
determines the surfaces satisfying (.) under an additional assumption.
As a result of this theorem, we give three corollaries. The first of the
corollaries is proved independently by Enrico Bombieri by a similar
method.

Details will be published elsewhere.
2. Let M e SL(3, Z) be a unimodular matrix, with one real and

two non-real eigenvalues, a, fl, , where afl--1 and c> 1. Let

a-- a be a real eigenvector of and b= b an eigenvector of/.
a3 b3

Let G be the group generated by the analytic automorphisms"
(W, Z)-(W+mlal + m2a2 +m3a, Z+mlb+m.b2 +mb),

(m, m, m) e Z,
(w, z)-.(w, z),

of H C, where H is the upper half-plane. The action of G onHC
is properly discontinuous and fixed point free. Now we define an
analytic surface S to be HC/G. Then S, is differentiably a
3-torus bundle over a circle, b(S,)-1, b2(S,)-O, and S has the follow-
ing properties.

Proposition 1.
i) SM contains no curves,

ii) dim H(S, O)--dim H(S,, O)-dim H2(S,, 0)-0.
3. Let N--(n,) SL(2, Z) be a unimodular matrix with two real

eigenvalues, c, 1/c, where c> 1. Let

e- and a-
C2 a2

be real eigenvectors of a and l/a, respectively. We fix an arbitrary
complex number t and fix two integers, p, q, such that

0_<p, q<_]det (N-I)]--I.

51) be the solution of the following equation"Let b--
b2
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Let GN,,q, be the group of analytic automorphisms ofHC generated
by

(W,Z)(W+e,Z+W+b3, i=1,,
(W, z)-(oW, Z+ t).

The action of Gv,,,q,, on HC is properly discontinuous and fixed point
free. Now we define an analytic surface Sv,,,q,t to be H C/Gv,,,q,,.
Then Sv,,,q, is differentiably a fibre bundle over a circle of which fibre
is a circle-bundle over a 2-torus, b(Sv,,,q,t)= 1, b(S2v,,,q,t)=O.
has the following properties.

Proposition 2.
i) SN,p,q, contains no curves,

ii) dim U(SN,p,q,t, 0)--dim Hi(Sg,p,q,t, ))--1, and
dim He(SN,p,q,t, 0)--0,

iii) (S,,q,}ec forms a locally complete family of deformations.
4. Now we state our main theorem. Our method of proof of this

theorem is similar to K. Kodaira [1, 11, 12].
Theorem. Let S be a surface satisfying the conditions (.). If

there exists a complex line bundle F on S such that dim H(S, (R)((F))
:/:0, then S has S or Sv,,q,t as its finite unramified covering.

5. From the above theorem, we can derive the ollowing
corollaries.

We denote by/ the representation of the fundamental group into
C* which defines the canonical line bundle K. Then we have:

Corollary 1. Let S be a surface satisfying (.). If the represen-
tation/K is not real, then S has S as its finite unramified covering.

We denote by [S] the underlying differentiable manifold of a sur-
face S. Then we have:

Corollary 2. There exists on [S] no complex structure other
than S.

Corollary 3. Every complex structure on [S,,q,t] belongs to the
family (Sv,,,q,t}ec.
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