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(Comm. by KSsaku YOSID., M. J. A., Nov. 13, 1972)

The purpose of this note is to determine the structure o some class
of single (linear) pseudo-differential equations by the aid o "quantized"
contact transformations. (C. Egorov [1], HSrmander [4] and Sato,
Kawai and Kashiwara [8].) It extends a result in 2 o Chapter III
of Sato, Kawai and Kashiwara [8] under the assumption o single
equations.

Our main result is the ollowing.
Theorem. Let P(x,D) be a pseudo-differential operator defined

in a complex neighborhood U of Xo*-(Xo, /-1 Vo) e /-1 S’M, where M
is an n-dimensional real analytic manifold. Denote its principal symbol
by P(x, ). Assume that P(x, D) satisfies conditions (1)and (2) below.

Then the equation P(x,D)u-O is micro-locally equivalent to one
of the Mizohata equations

+/ x )u
considered near (0; /-1 (0, 1, 0,..., 0)) for some positive integers k
and 1.

(1) V--{(z, 0 e UIP(z,)-O} is a non-singular manifold. (Note
that its defining ideal is not necessarily reduced.)

(2) There exist holomorphic functions fx(z, ) and fi.(z, ) homo-
geneous in such that fl=fi.-O on V F V, V denoting the complex
conjugate of V, and that their poisson bracket {fl,f2} never ;anishes.

Proof. We denote by Q(z, ) a generator of the reduced defining
ideal of V, i.e. P-Q. Then condition (2) assures that d(z,)Q(z,O
and the canonical 1-orm =,__dz are linearly independent in a
neighborhood o x0*. Hence by a suitable contact transformation we
may assume without loss o generality that Q(z, ) has the orm

where (z, ) is real-valued on S*M and that V F V={(x, 0 z-0, -0}
(c. Lemma 2.3.3 in Chapter III of Sato, Kawai and Kashiwara [8]).
Then clearly VF V={-(z, 0-0}. We can assume without loss o
generality (x0, V0)- (0 (0, 1, 0, ..., 0)). Therefore we can find an integer
k so that 0(z, ’)-(z, )l--0 has the form _+ zfz(z, ’) where Z never
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vanishes and is positive-valued at (x0, ]0). Here and in the sequel ’denotes (, ..., ). Defining t(z, ) so that (z, )=0(z, ’) +t(z, ),
Q(z, ) when multiplied by 1/(1 //-1 ), acquires the form
( 4 ) q(z, ) +_ /-- 1 (z, )
where

q(z, ) +_ z0(z, );(z, ’) /(1 +0(z, )),
(z, )-zz(z, ’) /(1 +(z, )).

Since Z(z, ’)/(1 +O(z, )) never vanishes in a neighborhood of x0*, we
may define a holomorphic unction r(z, ) by

z JZ(z, ’)/(1 +0(z, )).
Conditions (2) assures that
( 5 ) {q(z, ), r(z, )} =/= 0
in a neighborhood o x0*. By replacing r by --r if necessary, we can
assume that {q, r}0 holds on a real neighborhood of (x0 ]0)e S*M.

Now we want to find a holomorphic unction a(z, ) defined in a
neighborhood of x0* (and homogeneous o degree 1/k(k+ 1) in ) so
that
( 6 ) {aq, at} 1
and that
( 7 ) a(Xo*)=/=O.

Once such a unction a(z,C) is obtained, we can apply the
"quantized" contact transformation to P(x, D) so that it takes the form
((D+/--1 zD)///D) (cf. Theorem 5.3.7 in Chapter II of Sato,
Kawai and Kashiwara [8]).

The existence of the required a(z, ) is proved in the ollowing way:
If we can find a holomorphic unction A(z,C;s,t) such that

A(x*o 0, 0) =/: 0 and that
1 t__A + k sA + t___{q,A)

(8) k+l t k+l s k+l {q,r}

/
k .s {A,r} /A_I

holds, then a(z, )= (A(z, q(z, ), r(z, )))1/(/1) clearly satisfies (6) and

(7). Here the Poisson bracket {q,A} (resp. {A, r})means the Poisson

bracket of q and A (resp. A and r) in which we regard s and t as

irrelevant parameters. For simplicity of notations we define the deri-

rations / nd / in (z, ) by 1 {q, .} and -1 {r, .} respectively.
{q, r} r}

Defining B(z, ,, s, t) by ,/A(z, ,Fs, ,t), we can readily rewrite

(8) in the ollowing orm"

( 9 ) 1 B + 1 AI(tB) + k .,_l4(sB)_,/{q(z, ), r(z, )}.
k+l 3 k+l k/l

The hyperplane {2--0} is clearly non-characteristic with respect to the
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first order differential equation (9), hence we can find a holomorphic
solution B(z, ,, s, ) of (9) by giving 0 as its Cauchy datum on {-0}.
Since neither A or A contains differentiation with respect to , the
equation (9) clearly implies that

Bl=o-O for ]-0, ...,k

and that
/

B k--0) 0

in a real neighborhood /2 of (z, 5,,,s, t)--(Xo,]o, 0, 0, 0). This implies
that B/,/ is holomorphic and positive-valued in /2. Moreover, the
expected homogeneity of B

B(C, c-8, c-lt)--c+B(, 8,

is clearly satisfied, since B is the unique solution of the equation (9)
with Cauchy datum 0.

This means that we can find A(z, s, t), whence also a(z, ) so that
it satisfies (6) and (7). This completes the proof of the theorem.

Remark. The structure o the microunction solution sheaf o the
(pseudo-) differential equations

+_ -o

is easily determined by the aid o the elementary solutions constructed
in 3.2 o Chapter I of Sato, Kawai and Kashiwara [8]. The result is
as ollows

On a neighborhood 9 of x0*--(0 /1 (0, 1, 0, ..., 0)) we have or
any
(10) ’t ,(!g,, C)--0 2or any ], i k is even.
(C. Mizohata [6], Suzuki [10].)

(11) t / t0 or ]=/= 1(,,C)-C for y-i on
and

t if k is odd on {z]> 0}(,,, C) 0 for ]:/: 0
Cv for y-0,

where C denotes the shea of microunctions on /--1 S’N, where S*N
is identified with {(x, ]) e S*MI x,=],-0}.

Thus our theorem clearly extends the results on the (analytic)
hypoellipticity and non-solvability of linear (pseudo-) differential equa-
tions obtained by many authors (sometimes only or distribution solu-
tions) at the generic points on the characteristic variety. (Cf. e.g.
Egorov [2], [3], Nirenberg and Tr&ves [7], Treves [11], Kwai [5],
Schapira [9] nd Suzuki [10].)
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