30. A Note on a Problem of Matlis

By Kunio YAMAGATA Tokyo University of Education (Comm. by Kenjiro SHODA, M. J. A., Feb. 12, 1973)

Following Faith and Walker [2] a module is said to be completely decomposable if it is a direct sum of indecomposable injective submodules. And a right ideal I of a ring R is called irreducible if $I \neq R$ and $I = I_1 \cap I_2$ implies $I = I_1$ or $I = I_2$, for all right ideals I_1 and I_2 of R.

It is an open problem whether every direct summand of a completely decomposable module is also completely decomposable, and E. Matlis [5] proved that we have an affirmative answer for modules over a right Noetherian ring. Recently in [6] we have proved that if a ring is non-singular and satisfying the ascending chain condition for essential right ideals its answer is also in the affirmative. Further it is known by us that the non-singular condition of them can be removed. Thus, in this note, using a result of Harada and Sai [3], we shall prove it as a corollary to the theorem which is a special case, concerning the completely decomposable modules, of the Krull—Remak—Schmidt— Azumaya's theorem. Namely,

Theorem 1. The following conditions are equivalent.

(I) A ring R satisfies the ascending chain condition for irreducible right ideals.

(II) A ring R satisfies the ascending chain condition for essential, irreducible right ideals.

(III) If a completely decomposable module M_R has two direct sum decompositions in which each component is indecomposable, injective submodule;

$$M = \sum_{i \in I} \bigoplus M_i = \sum_{j \in J} \bigoplus N_j,$$

then for any subset $I' \subset I$ (resp. $J' \subset J$) there exists a one-to-one mapping φ of I' into J (resp. J' into I) such that $M_i \cong N_{\varphi(i)}$ for all $i \in I'$ (resp. $N_j \cong M_{\varphi(j)}$ for all $j \in J'$) and

$$\begin{split} M &= \sum_{i \in I'} \bigoplus N_{\varphi(i)} \bigoplus \sum_{i \in I - I'} \bigoplus M_i \\ \left(\text{resp. } M &= \sum_{j \in J'} \bigoplus N_j \bigoplus \sum_{i \in I - \varphi(J')} \bigoplus M_i \right). \end{split}$$

Corollary. If a ring satisfies the equivalent condition in Theorem 1, then every direct summand of a completely decomposable module is also completely decomposable.

In case a ring R is right Noetherian the theorem is a part of [3;

Proposition 10—Corollary]. However, as was seen in [6], a ring satisfying the condition (II) in Theorem 1 is not necessarily right Noetherian. Thus, Corollary is a generalization of a result of Matlis [5] who proved, as mentioned above, the case of a right Neotherian ring. It should be noted that not every ring satisfies the condition (II) (e.g. indiscrete valuation ring).

For the proof of Theorem 1 we use the following lemma of Harada and Sai [3].

Lemma. For any completely decomposable module the condition (III) in Theorem 1 holds if and only if, for any family of indecomposable injective modules $\{M_n | n \ge 1\}$ and non-isomorphisms $\{f_n: M_n \to M_{n+1} | n \ge 1\}$, and for any element $x \in M_1$, there exists an integer n such that $f_n f_{n-1} \cdots f_1(x) = 0$.

Moreover, in this case every direct summand of a completely decomposable module is completely decomposable.

Proof. Since an endomorphism ring of an indecomposable injective module is local, this lemma is a special case of [3; Theorem 9].

Proof of Theorem 1.

 $(I) \Rightarrow (II)$. Trivial.

Assume that there exist a family of non-ismorphisms (II)⇒(III). $\{f_n: M_n \rightarrow M_{n+1} | n \ge 1, M_n \text{ is indecomposable injective}\}$ and a non-zero element $x \in M_1$ such that $f_n \cdots f_1(x) \neq 0$ for any $n \ge 1$. Then, since each f_n is not a monomorphism, Ker $f_n \cdots f_1 \neq 0$ and Ker $f_{n+1} f_n \cdots f_1 / \text{Ker} f_n \cdots f_1$ is essential in $M_1/\operatorname{Ker} f_n \cdots f_1$. For the last fact, it suffices to show that $\operatorname{Ker} f_{n+1} f_n \cdots f_1 / \operatorname{Ker} f_n \cdots f_1$ is not zero, because $M_1 / \operatorname{Ker} f_n \cdots f_1$ is isomorphic to a submodule $f_n \cdots f_1(M_1)$ of M_{n+1} , which is uniform. Since Ker $f_{n+1}f_n\cdots f_1=(f_n\cdots f_1)^{-1}$ (Ker $f_{n+1}\cap \operatorname{Im} f_n\cdots f_1$), Ker $f_{n+1}\cap \operatorname{Im} f_n$ $\cdots f_1 \neq 0$ and $(f_n \cdots f_1)$ (Ker $f_{n+1} f_n \cdots f_1$) = Ker $f_{n+1} \cap \operatorname{Im} f_n \cdots f_1 \neq 0$, if Ker $f_{n+1}f_n \cdots f_1 = \text{Ker } f_n \cdots f_1$ for some *n*, then $(f_n \cdots f_1)$ (Ker $f_{n+1}f_n$ $\cdots f_1 = (f_n \cdots f_1) (\text{Ker } f_n \cdots f_1) = 0$, which is a contradiction. Hence $(0: f_n \cdots f_1(x)) \subseteq (0: f_{n+1}f_n \cdots f_1(x))$ for each $n \ge 1$, because, since 0 $\neq \overline{x} \in M_1/\operatorname{Ker} f_n \cdots f_1$, there exists $r \in R$ such that $0 \neq \overline{x}r \in \operatorname{Ker} f_{n+1}f_n$ $\cdots f_1/\operatorname{Ker} f_n \cdots f_1$. This shows that $f_{n+1}f_n \cdots f_1(x)r = 0$ and $f_n \cdots f_1(x)r$ $\neq 0$, that is, $r \in (0: f_{n+1}f_n \cdots f_1(x))$ and $r \notin (0: f_n \cdots f_1(x))$.

Now, there exists a non-zero element $f_1(x)a \in f_1(x)R \cap \operatorname{Ker} f_2$ for some $a \in R$ since M_2 is uniform and f_2 is not a monomorphism. Putting y = xa, a right ideal $I = \{r \in R \mid xr \in yR\}$ is essential in R. Then, for any $r \in If_2f_1(x)r = f_2f_1(xr) \subset f_2f_1(yR) \subset f_2(\operatorname{Ker} f_2)$ and $f_2(\operatorname{Ker} f_2) = 0$. Hence $I \subset (0: f_2f_1(x))$ and $(0: f_n \cdots f_1(x))$ is therefore essential in R for $n \ge 2$. On the other hand, since each M_n is uniform and $R/(0: f_n \cdots f_1)$ is isomorphic to $f_n \cdots f_1(x)R$ which is a submodule of M_{n+1} , $R/(0: f_n \cdots f_1(x))$ is uniform and hence $(0: f_n \cdots f_1(x))$ is irreducible. Thus we have a strictly ascending chain of essential, irreducible right ideals $\{(0: f_n \cdots$ $f_1(x)$ |n=2 which contradicts to the condition (II). And therefore we have the condition (III) by lemma.

 $(\text{III}) \Rightarrow (\text{I}).$ Assume that we have a strictly ascending chain of irreducible right ideals $\{I_n \mid n \ge 1\}$. Then we can define a non-isomorphism $g_n \colon R/I_n \to R/I_{n+1}$ for each *n* by putting $g_n(r+I_n) = r+I_{n+1}$ for $r \in R$. Since R/I_n is uniform right module, the injective hull $E(R/I_n)$ is indecomposable. Hence, if we extend g_n to $f_n \colon E(R/I_n) \to E(R/I_{n+1})$, the family $\{f_n \mid n \ge 1\}$ is of non-isomorphisms and $f_n \cdots f_1(1+I_1) \neq 0$ for any $n \ge 1$. This contradicts the condition (III) by Lemma. q.e.d.

Now then, Corollary is immediately obtained from Theorem 1 and Lemma.

In [1], a direct sum decomposition $M = \sum_{i \in I} \bigoplus M_i$ of a module M is said to complement direct summands in case for each direct summand N of M there is a subset $J \subset I$ with $M = N \oplus \sum_{j \in J} \oplus M_j$. Then, applying this notion to completely decomposable modules, it is easy to see that each completely decomposable module has a decomposition that complements direct summands if and only if the equivalent condition in Lemma holds for any family of completely decomposable modules and non-isomorphisms $\{f_n: M_n \to M_{n+1} | n \ge 1\}$, in view of [4; Corollary to Theorem 4] and [1; Remark]. Thus we can restate Theorem 1 as the following (c.f. [1; Theorem 8]).

Theorem 2. A ring satisfies the ascending chain condition for essential, irreducible right ideals if and only if every completely decomposable module has a decomposition that complements direct summands.

References

- F. W. Anderson and K. R. Fuller: Modules with decompositions that complement direct summands. J. Algebra, 22, 241-253 (1972).
- [2] C. Faith and E. A. Walker: Direct sum representations of injective modules. J. Algebra, 5, 203-221 (1967).
- [3] M. Harada and Y. Sai: On categories of indecomposable modules. I. Osaka J. Math., 7, 323-344 (1970).
- [4] M. Harada: On categories of indecomposable modules. II. Osaka J. Math., 8, 309-321 (1971).
- [5] E. Matlis: Injective modules over Noetherian rings. Pacific J. Math., 8, 511-528 (1958).
- [6] K. Yamagata: Non-singular rings and Matlis' problem. Sc. Rep. T. K. D. (A), 11, 114–121 (1972).

No. 2]