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1. Introduction. Consider a (bounded linear) operator T acting
on a Hilbert space . As usual, cf. [3], we shall call

the numerical range o T. An operator T is called a convexoid if W(T)
=coa(T), where W(T) isthe closure of W(T), a(T) is the spectrum of
T and co M is the convex hull o a set M in the complex plane. We
shll also say that T satisfies the condition (G) (in symbol, T

1
dist (2, (T))

or any 2 e a(T). If T e (G), then T is convexoid, cf. [1] and [7].
In a recnt paper [4], Luecke introduced a new class of operators"

Teif

(2) (T_R)_II_ 1
dist (, W(T))

or any 2 e W(T). He proved the ollowing theorem"
Theorem A (Luecke). T e if and only if 3W(T)a(T), where

3M is the boundary of M.
Luecke’s definition and theorem are interested in their own right;

they establish a closed connection between a growth condition o resol-
vents and a spectral property o operators. However, in the light of
the theory o seminormal operators, Luecke’s class is rather restric-
tive. Even in the case o finite dimensional spces,

_
consists e the

multiples o the identity, so that general normal operators are excluded
by .

In the present note, we shall introduce a class o operators which
is defined by a growth condition and includes both (G) and _. For
this purpose, we need to define the hen-spectrum (T) o an operator
T by (T)--([a(T)]) where M is the complement o M and [M] the
component o the infinity (unbounded component)o M. Clearly, [M]
is unique if M is bounded. By the definition, it is clear that (T) is
compact set in the plane and contains a(T). Furthermere, we need the
ollowing idea due to Saito [6]" T is clled an operator stisfying the
condition (G1) for M if

1(3)
dist (+, M)
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or any e M, where M is a closed set containing a(T). Particularly,
we shall say that T satisfies the condition (H) (in symbol, T e (H1)) if
T satisfies the condition (G) for a(T), that is,

1(4)
dist (, o(T))

for any 2 + (T).
In this note, we shall construct operators satisfyin the condition

(H) in 9. and apply them to study some relations between classes of
non-normal operators in 8. In 4, we shall give two remarks on
Luecke’s principle of constructions of operators and his class _.

2. Construction. We shall use Luecke’s principle to construct
operators satisfyin the condition (H), el. also 4.

Theorem 1. If A is an operator and B is a normal operator with
W(A)(B), then T--AB satisfies (H).

Proof. By the hypothesis, we have
(T) (A) [J (B) (B).

Consequently, for any 2 e (T), we have
(T--2)-1[1= max [[[ (A--2)- 11,

< max
dist (2, W(A)) dist (2, e(B))

_<_ max
dist
1

dist (2, e(B))
1

dist (2, (T))
so that T e (H).

Before to proceed further, we shall look at an elementary property
of the hen-spectra of operators"

Proposition 2. (T) ccoa(T) for any T. Therefore, we have
d(T) W(T).

Proof. Since co a(T) is connected, we have
(co a(T))c- [(co a(T)c]+ [(T)]+.

Hence we have
co a(T) D ([a(T)]+) 0(T).

By Theorem A and Proposition 2, we have an another characteri-
zation of operators belonging to

Theorem 3. T if and only if W(T)--O(T).
Proof. If T e _q, then 3W(T)ca(T) by Theorem A, so that a(T)

includes the convex curve 3W(T). Hence we have W(T)cO(T)c W(T),
or W(T)--O(T). Conversely, if W(T)--O(T), then we have OW(T)
=O(T)ca(T). Hence, by Luecke’s theorem, we have T e _.
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Now, we shall give an operator which has a finer property than
that of Theorem 1"

Theorem 4. If A is an operator and B is a normal operator with
W(A)a(B) and (B)=/=coa(B), then T=AB but T e (H).

Proof. From Theorem 1, we have T e (H). We wish to show that
W(T) =/= (T). We have

d(T)-- d(A) (J (B) d(B) :/= co a(B)= W(B)- W(T),
so that we have T e _.

]xampleo Let U be the bilateral shit o multiplicity 1 and B a
normal operator with a(B)={2;I,I=4,12--31=5}. Put A=U--3 and
T=A(B. Then we have by [3; Prob. 68]

W(A)={ 1+31 1}.
Hence W(A) a(B) and

W(T)-(] 1--4, Re 0}.
On the other hand, it is clear that 0 e (T). From Theorem 4, we have
T e and T e (H).

:. Application. The following two theorems indicate the position
of the class (H) among the classes of seminormal operators"

Theorem 5. If an operator T satisfies (G), then T satisfies (H)
too.

Proof. Comparing (4) with (1), we hare that T (G) implies
T e (H).

Theorem 6. If an operator T satisfies (H), then T is a convexoid.
Proof. It is known in [5] that T is a convexoid if and only if T

satisfies the condition (G) or co a(T) in the sense of Saito. Hence
Proposition 2 implies that T is a convexoid if T e (H).

Theorem 7. The class (H) properly contains the class (G).
Proof. We shall construct T e (H1) using Theorem 1. Put

Then we have e(A)--{0} and W(A)=D where D is the unit disk. More-
over, let U be the simple bilateral shitt. Then, by [; Prob. 68], we
have (U)- C and e(U) D where 6’ is the unit circle. Put T=A@U.
Then T satisfies (H) by Theorem 1. Clearly, we have e(T)={0} U 6’.
Furthermore, we have

If we put

then we have



No. 2] Some Examples of Non-normal Operators. II 121

If T e (G), then we have

dist (-- 1/2, a(T))
and this contradiction proves the theorem.

Remark. I T e (H1) and a(T) is a connected set or a finite set,
then T satisfies the condition (G). Therefore, in the case of finite
dimensional spaces, the condition (H) coincides with the normality.

The above remark gives us an example of convexoids which does
not belong to (H), that is, a non-normal finite dimensional convexoid
is the desired which is already known, cf. [2; Remark to Theorem 7].
Hence, the class (H) is properly contained in the class of all convexoids.

The operator T in the proof of Theorem 7 belongs to by Theorem
3. Hence we have

Theorem 8. There is an operator in which does not satisfy the
condition (G).

On the other hand, we have
Theorem 9. If T e , then T satisfies the condition (H).
Proof. Suppose that T e . Then we have or any 2 e W(T)

1 1(T--2)-]=
dist (, W(T)) dist (, (T))

by Theorem 3. Hence, we have T e (H).
An operator T is called a normaloid if T--r(T) where r(T) is the

spectral radius of T"
r(T)--sup {; e a(T)}.

Also, T is called a numeroid if W(T) is a spectral set or T in the sense
of yon Neumann, cf. [2]. In the remainder o this section, we shall
discuss some relations between these classes and the class (H).

Proposition 10. There are
( ) a normaloid which does not belong to (H),
(ii) a numeroid which does not belong to (H),
(iii) an operator in (H) which is not a normaloid, and
(iv) an operator in (H) which is not a numeroid.

Proof. Since a normaloid T needs not a convexoid, cf. [3],
Theorem 6 implies (i) at once. By [2; Remark to Theorem 7],

0 0 @ 22 0
0 /

is a non-normal numeroid if the triangle with vertices 2, 22, 23 contains
the unit disk D. Hence, by the above remark, (ii) is proved. Let A be
as in (B) and B= U where U is the simple unilateral shift. Then, by
Theorem 1, A@B--T so tha T (H) by Theorem . However, T
is not a normaloid, since IITII2 and (T)=/ by the fact that a(T)
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=a(A) U a(B)= D. Hence we have (iii). Finally, (iv) is false and Te (H1)
is automatically a numeroid, then T is a normaloid, which contradicts
().

4. Appendix. Here we shall give to remarks" The one concerns
with an extension of Theorem 1 according to the line o Saito’s gener-
alized growth condition and the other with Luecke’s class .

The ollowing theorem gives us a unified formulation of known
results (compare Theorem 1 and [2; Theorem A])"

Luecke’s principle. If A is an operator, X a closed set in the
plane with W(A) X and B a normal operator with a(B) X, then T
=AB satisfies (G1) for X in the sense of Saito.

Since the proo is completely analogous to that of Theorem 1, we
shall omit it.

In the above, W(A)cX is essential we can not replace by Xa(A),
as in the ollowing

Proposition 11. If A does not satisfy (G)for X which is a closed
set with a(A)X W(A) and X W(A), then T=AB does not satisfy

(G1) for X whenever B is a normal operator with a(B)X.
Proof. By the hypothesis, we have a 2 e X such that

1
dist (2, X)

Hence, we have
]I(T-- 2)- I]- max Ill (A )- II, (B 2)-11[]

=max (A --2)-I I[, dist(:a(B)) dist(2, X)
Finally, we shall introduce a class of operators. Let (2 be the set

of all operators satisfying

( 6 e(T) co a(T).
This is equivalent to state that T e if and only if 3(T) is a convex
curve. By Theorem 3, T e !R implies T e . In the converse direction,
we shall show the following theorem which gives an another characteri-
zation of Luecke’s class"

Theorem 12. 2R-C where is the set of all convexoids.

Proof. C is proved by Luecke [4] and _c is clear by the
above. Hence Cc. Conversely, if T e Cfl , then we have

d(T) co a(T) W(T),
so that we have C gl c: by Theorem 3.
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