25. On Some Examples of Non-normal Operators. II

By Masatoshi FUJII

Fuse Senior Highschool, Osaka

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1973)

1. Introduction. Consider a (bounded linear) operator T acting on a Hilbert space \mathfrak{F} . As usual, cf. [3], we shall call

 $W(T) = \{(Tx | x); ||x|| = 1, x \in \mathfrak{H}\}$

the numerical range of T. An operator T is called a convexoid if $\overline{W}(T) = \cos \sigma(T)$, where $\overline{W}(T)$ is the closure of W(T), $\sigma(T)$ is the spectrum of T and $\cos M$ is the convex hull of a set M in the complex plane. We shall also say that T satisfies the condition (G_1) (in symbol, $T \in (G_1)$) if

(1)
$$||(T-\lambda)^{-1}|| \leq \frac{1}{\operatorname{dist}(\lambda,\sigma(T))}$$

for any $\lambda \notin \sigma(T)$. If $T \in (G_1)$, then T is a convexoid, cf. [1] and [7].

In a recnt paper [4], Luecke introduced a new class of operators: $T \in \mathcal{R}$ if

(2)
$$||(T-\lambda)^{-1}|| = \frac{1}{\operatorname{dist}(\lambda, W(T))}$$

for any $\lambda \notin \overline{W}(T)$. He proved the following theorem:

Theorem A (Luecke). $T \in \mathcal{R}$ if and only if $\partial W(T) \subset \sigma(T)$, where ∂M is the boundary of M.

Luecke's definition and theorem are interested in their own right; they establish a closed connection between a growth condition of resolvents and a spectral property of operators. However, in the light of the theory of seminormal operators, Luecke's class \mathcal{R} is rather restrictive. Even in the case of finite dimensional spaces, \mathcal{R} consists of the multiples of the identity, so that general normal operators are excluded by \mathcal{R} .

In the present note, we shall introduce a class of operators which is defined by a growth condition and includes both (G_1) and \mathcal{R} . For this purpose, we need to define the *hen-spectrum* $\tilde{\sigma}(T)$ of an operator T by $\tilde{\sigma}(T) = ([\sigma(T)^c]_{\infty})^c$ where M^c is the complement of M and $[M]_{\infty}$ the component of the infinity (unbounded component) of M. Clearly, $[M]_{\infty}$ is unique if M is bounded. By the definition, it is clear that $\tilde{\sigma}(T)$ is a compact set in the plane and contains $\sigma(T)$. Furthermore, we need the following idea due to Saito [6]: T is called an operator satisfying the *condition* (G_1) for M if

(3)
$$||(T-\lambda)^{-1}|| \leq \frac{1}{\operatorname{dist}(\lambda, M)}$$

for any $\lambda \notin M$, where *M* is a closed set containing $\sigma(T)$. Particularly, we shall say that *T* satisfies the *condition* (H_1) (in symbol, $T \in (H_1)$) if *T* satisfies the condition (G_1) for $\tilde{\sigma}(T)$, that is,

(4)
$$||(T-\lambda)^{-1}|| \leq \frac{1}{\operatorname{dist}(\lambda, \tilde{\sigma}(T))}$$

for any $\lambda \notin \tilde{\sigma}(T)$.

In this note, we shall construct operators satisfying the condition (H_1) in §2 and apply them to study some relations between classes of non-normal operators in §3. In §4, we shall give two remarks on Luecke's principle of constructions of operators and his class \mathcal{R} .

2. Construction. We shall use Luecke's principle to construct operators satisfying the condition (H_1) , cf. also § 4.

Theorem 1. If A is an operator and B is a normal operator with $\overline{W}(A) \subset \tilde{\sigma}(B)$, then $T = A \oplus B$ satisfies (H_1) .

Proof. By the hypothesis, we have

 $\tilde{\sigma}(T) \supset \tilde{\sigma}(A) \cup \tilde{\sigma}(B) = \tilde{\sigma}(B).$

Consequently, for any $\lambda \notin \tilde{\sigma}(T)$, we have

$$\begin{split} |(T-\lambda)^{-1}|| &= \max\left[||(A-\lambda)^{-1}||, ||(B-\lambda)^{-1}||\right] \\ &\leq \max\left[\frac{1}{\operatorname{dist}\left(\lambda, \overline{W}(A)\right)}, \frac{1}{\operatorname{dist}\left(\lambda, \sigma(B)\right)}\right] \\ &\leq \max\left[\frac{1}{\operatorname{dist}\left(\lambda, \overline{W}(A)\right)}, \frac{1}{\operatorname{dist}\left(\lambda, \overline{\sigma}(B)\right)}\right] \\ &= \frac{1}{\operatorname{dist}\left(\lambda, \overline{\sigma}(B)\right)} \\ &\leq \frac{1}{\operatorname{dist}\left(\lambda, \overline{\sigma}(T)\right)}, \end{split}$$

so that $T \in (H_1)$.

Before to proceed further, we shall look at an elementary property of the hen-spectra of operators:

Proposition 2. $\tilde{\sigma}(T) \subset \cos \sigma(T)$ for any T. Therefore, we have $\tilde{\sigma}(T) \subset \overline{W}(T)$.

Proof. Since $\cos \sigma(T)$ is connected, we have

 $(\operatorname{co} \sigma(T))^c = [(\operatorname{co} \sigma(T)^c]_{\infty} \subset [\sigma(T)^c]_{\infty}.$

Hence we have

 $\cos \sigma(T) \supset ([\sigma(T)^c]_{\infty})^c = \tilde{\sigma}(T).$

By Theorem A and Proposition 2, we have an another characterization of operators belonging to \Re :

Theorem 3. $T \in \mathcal{R}$ if and only if $\overline{W}(T) = \tilde{\sigma}(T)$.

Proof. If $T \in \mathcal{R}$, then $\partial W(T) \subset \sigma(T)$ by Theorem A, so that $\sigma(T)$ includes the convex curve $\partial W(T)$. Hence we have $\overline{W}(T) \subset \tilde{\sigma}(T) \subset \overline{W}(T)$, or $\overline{W}(T) = \tilde{\sigma}(T)$. Conversely, if $\overline{W}(T) = \tilde{\sigma}(T)$, then we have $\partial W(T) = \partial \tilde{\sigma}(T) \subset \sigma(T)$. Hence, by Luecke's theorem, we have $T \in \mathcal{R}$.

Now, we shall give an operator which has a finer property than that of Theorem 1:

Theorem 4. If A is an operator and B is a normal operator with $\overline{W}(A) \subset \sigma(B)$ and $\tilde{\sigma}(B) \neq \operatorname{co} \sigma(B)$, then $T = A \oplus B \notin \mathcal{R}$ but $T \in (H_1)$.

Proof. From Theorem 1, we have $T \in (H_1)$. We wish to show that $\overline{W}(T) \neq \tilde{\sigma}(T)$. We have

 $\tilde{\sigma}(T) = \tilde{\sigma}(A) \cup \tilde{\sigma}(B) = \tilde{\sigma}(B) \neq \operatorname{co} \sigma(B) = \overline{W}(B) = \overline{W}(T),$ so that we have $T \notin \mathcal{R}$.

Example. Let U be the bilateral shift of multiplicity 1 and B a normal operator with $\sigma(B) = \{\lambda; |\lambda| = 4, |\lambda-3| = 5\}$. Put A = U-3 and $T = A \oplus B$. Then we have by [3; Prob. 68]

$$\overline{W}(A) = \{\lambda; |\lambda + 3| \leq 1\}.$$

Hence $\overline{W}(A) \subset \sigma(B)$ and

 $\overline{W}(T) = \{\lambda; |\lambda| = 4, \operatorname{Re} \lambda \leq 0\}.$

On the other hand, it is clear that $0 \notin \tilde{\sigma}(T)$. From Theorem 4, we have $T \notin \mathcal{R}$ and $T \in (H_1)$.

3. Application. The following two theorems indicate the position of the class (H_1) among the classes of seminormal operators:

Theorem 5. If an operator T satisfies (G_1) , then T satisfies (H_1) too.

Proof. Comparing (4) with (1), we have that $T \in (G_1)$ implies $T \in (H_1)$.

Theorem 6. If an operator T satisfies (H_1) , then T is a convexoid.

Proof. It is known in [5] that T is a convexoid if and only if T satisfies the condition (G_1) for $\cos \sigma(T)$ in the sense of Saito. Hence Proposition 2 implies that T is a convexoid if $T \in (H_1)$.

Theorem 7. The class (H_1) properly contains the class (G_1) .

Proof. We shall construct $T \in (H_1)$ using Theorem 1. Put

Then we have $\sigma(A) = \{0\}$ and W(A) = D where D is the unit disk. Moreover, let U be the simple bilateral shift. Then, by [3; Prob. 68], we have $\sigma(U) = C$ and $\tilde{\sigma}(U) = D$ where C is the unit circle. Put $T = A \oplus U$. Then T satisfies (H_1) by Theorem 1. Clearly, we have $\sigma(T) = \{0\} \cup C$. Furthermore, we have

$$(A+\frac{1}{2})^{-1}=2\begin{pmatrix}1&-4\\0&1\end{pmatrix}.$$

If we put

$$x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
,

then we have

$$\left\| \left(A + \frac{1}{2} \right)^{-1} x \right\| = 2\sqrt{16+1} > 2.$$

If $T \in (G_1)$, then we have

$$2 < \left\| \left(A + \frac{1}{2}\right)^{-1} x \right\| \le \left\| \left(A + \frac{1}{2}\right)^{-1} \right\| \le \frac{1}{\operatorname{dist}\left(-1/2, \sigma(T)\right)} = 2$$

and this contradiction proves the theorem.

Remark. If $T \in (H_1)$ and $\sigma(T)$ is a connected set or a finite set, then T satisfies the condition (G_1) . Therefore, in the case of finite dimensional spaces, the condition (H_1) coincides with the normality.

The above remark gives us an example of convexoids which does not belong to (H_1) , that is, a non-normal finite dimensional convexoid is the desired which is already known, cf. [2; Remark to Theorem 7]. Hence, the class (H_1) is properly contained in the class of all convexoids.

The operator T in the proof of Theorem 7 belongs to \mathcal{R} by Theorem 3. Hence we have

Theorem 8. There is an operator in \mathcal{R} which does not satisfy the condition (G_1) .

On the other hand, we have

Theorem 9. If $T \in \mathcal{R}$, then T satisfies the condition (H_1) .

Proof. Suppose that $T \in \mathcal{R}$. Then we have for any $\lambda \notin \overline{W}(T)$

$$\|(T-\lambda)^{-1}\| = \frac{1}{\operatorname{dist}(\lambda, \overline{W}(T))} = \frac{1}{\operatorname{dist}(\lambda, \tilde{\sigma}(T))}$$

by Theorem 3. Hence, we have $T \in (H_1)$.

An operator T is called a *normaloid* if ||T|| = r(T) where r(T) is the spectral radius of T:

$$r(T) = \sup \{ |\lambda|; \lambda \in \sigma(T) \}.$$

Also, T is called a *numeroid* if W(T) is a spectral set for T in the sense of von Neumann, cf. [2]. In the remainder of this section, we shall discuss some relations between these classes and the class (H_1) .

Proposition 10. There are

- (i) a normaloid which does not belong to (H_1) ,
- (ii) a numeroid which does not belong to (H_1) ,
- (iii) an operator in (H_1) which is not a normaloid, and
- (iv) an operator in (H_1) which is not a numeroid.

Proof. Since a normaloid T needs not a convexoid, cf. [3], Theorem 6 implies (i) at once. By [2; Remark to Theorem 7],

$$\begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \oplus \begin{pmatrix} \lambda_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \lambda_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \lambda_3 \end{pmatrix}$$

is a non-normal numeroid if the triangle with vertices $\lambda_1, \lambda_2, \lambda_3$ contains the unit disk *D*. Hence, by the above remark, (ii) is proved. Let *A* be as in (5) and B = U where *U* is the simple unilateral shift. Then, by Theorem 1, $A \oplus B = T \in \mathcal{R}$ so that $T \in (H_1)$ by Theorem 5. However, *T* is not a normaloid, since $||T|| \ge 2$ and r(T) = 1 by the fact that $\sigma(T)$

No. 2]

 $=\sigma(A) \cup \sigma(B) = D$. Hence we have (iii). Finally, (iv) is false and $T \in (H_1)$ is automatically a numeroid, then T is a normaloid, which contradicts (iii).

4. Appendix. Here we shall give to remarks: The one concerns with an extension of Theorem 1 according to the line of Saito's generalized growth condition and the other with Luecke's class \mathcal{R} .

The following theorem gives us a unified formulation of known results (compare Theorem 1 and [2; Theorem A]):

Luecke's principle. If A is an operator, X a closed set in the plane with $\overline{W}(A) \subset X$ and B a normal operator with $\sigma(B) \subset X$, then $T = A \oplus B$ satisfies (G_1) for X in the sense of Saito.

Since the proof is completely analogous to that of Theorem 1, we shall omit it.

In the above, $\overline{W}(A) \subset X$ is essential; we can not replace by $X \supset \sigma(A)$, as in the following

Proposition 11. If A does not satisfy (G_1) for X which is a closed set with $\sigma(A) \subset X \subset \overline{W}(A)$ and $X \neq \overline{W}(A)$, then $T = A \oplus B$ does not satisfy (G_1) for X whenever B is a normal operator with $\sigma(B) \subset X$.

Proof. By the hypothesis, we have a $\lambda \notin X$ such that

$$\|(A-\lambda)^{-1}\| > \frac{1}{\operatorname{dist}(\lambda, X)}.$$

Hence, we have

$$\|(T-\lambda)^{-1}\| = \max\left[\|(A-\lambda)^{-1}\|, \|(B-\lambda)^{-1}\|\right]$$

=
$$\max\left[\|(A-\lambda)^{-1}\|, \frac{1}{\operatorname{dist}(\lambda, \sigma(B))}\right] > \frac{1}{\operatorname{dist}(\lambda, X)}.$$

Finally, we shall introduce a class of operators. Let Q be the set of all operators satisfying

(6) $\tilde{\sigma}(T) = \cos \sigma(T).$

This is equivalent to state that $T \in Q$ if and only if $\partial \tilde{\sigma}(T)$ is a convex curve. By Theorem 3, $T \in \mathcal{R}$ implies $T \in Q$. In the converse direction, we shall show the following theorem which gives an another characterization of Luecke's class:

Theorem 12. $\mathcal{R} = \mathcal{C} \cap \mathcal{Q}$ where \mathcal{C} is the set of all convexoids.

Proof. $\mathcal{R} \subset \mathcal{C}$ is proved by Luecke [4] and $\mathcal{R} \subset Q$ is clear by the above. Hence $\mathcal{R} \subset \mathcal{C} \subset Q$. Conversely, if $T \in \mathcal{C} \cap Q$, then we have $\tilde{\sigma}(T) = \operatorname{co} \sigma(T) = \overline{W}(T)$,

so that we have $\mathcal{C} \cap \mathcal{Q} \subset \mathcal{R}$ by Theorem 3.

References

 S. K. Berberian: An extension of Weyl's theorem to a class of not necessarily normal operators. Mich. Math. J., 16, 273-279 (1969). No. 2]

- [3] P. R. Halmos: A Hilbert Space Problem Book. Van Nostrand, Princeton (1967).
- [4] G. R. Luecke: A class of operators on Hilbert space. Pacific J. Math., 41, 153-156 (1971).
- [5] G. H. Orland: On a class of operators. Proc. Amer. Math. Soc., 15, 75–79 (1964).
- [6] T. Saito: A theorem on boundary spectra. Acta Sci. Math., Szeged, 33, 101-104 (1972).
- [7] J. G. Stampfli: Hyponormal operators and spectral density. Trans. Amer. Math. Soc., 117, 469-476 (1965).