25. On Some Examples of Non-normal Operators. II

By Masatoshi FuJII
Fuse Senior Highschool, Osaka
(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1973)

1. Introduction. Consider a (bounded linear) operator T acting on a Hilbert space \mathfrak{F}. As usual, cf. [3], we shall call

$$
W(T)=\{(T x \mid x) ;\|x\|=1, x \in \mathfrak{S}\}
$$

the numerical range of T. An operator T is called a convexoid if $\bar{W}(T)$ $=\operatorname{co} \sigma(T)$, where $\bar{W}(T)$ is the closure of $W(T), \sigma(T)$ is the spectrum of T and co M is the convex hull of a set M in the complex plane. We shall also say that T satisfies the condition $\left(G_{1}\right)$ (in symbol, $T \in\left(G_{1}\right)$) if

$$
\begin{equation*}
\left\|(T-\lambda)^{-1}\right\| \leqq \frac{1}{\operatorname{dist}(\lambda, \sigma(T))} \tag{1}
\end{equation*}
$$

for any $\lambda \notin \sigma(T)$. If $T \in\left(G_{1}\right)$, then T is a convexoid, cf. [1] and [7].
In a recnt paper [4], Luecke introduced a new class of operators: $T \in \mathscr{R}$ if

$$
\begin{equation*}
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, W(T))} \tag{2}
\end{equation*}
$$

for any $\lambda \notin \bar{W}(T)$. He proved the following theorem:
Theorem A (Luecke). $T \in \mathbb{R}$ if and only if $\partial W(T) \subset \sigma(T)$, where ∂M is the boundary of M.

Luecke's definition and theorem are interested in their own right; they establish a closed connection between a growth condition of resolvents and a spectral property of operators. However, in the light of the theory of seminormal operators, Luecke's class \mathcal{R} is rather restrictive. Even in the case of finite dimensional spaces, \mathcal{R} consists of the multiples of the identity, so that general normal operators are excluded by R.

In the present note, we shall introduce a class of operators which is defined by a growth condition and includes both $\left(G_{1}\right)$ and \mathcal{R}. For this purpose, we need to define the hen-spectrum $\tilde{\sigma}(T)$ of an operator T by $\tilde{\sigma}(T)=\left(\left[\sigma(T)^{c}\right]_{\infty}\right)^{c}$ where M^{c} is the complement of M and $[M]_{\infty}$ the component of the infinity (unbounded component) of M. Clearly, $[M]_{\infty}$ is unique if M is bounded. By the definition, it is clear that $\check{\sigma}(T)$ is a compact set in the plane and contains $\sigma(T)$. Furthermore, we need the following idea due to Saito [6]: T is called an operator satisfying the condition $\left(G_{1}\right)$ for M if

$$
\begin{equation*}
\left\|(T-\lambda)^{-1}\right\| \leqq \frac{1}{\operatorname{dist}(\lambda, M)} \tag{3}
\end{equation*}
$$

for any $\lambda \notin M$, where M is a closed set containing $\sigma(T)$. Particularly, we shall say that T satisfies the condition $\left(H_{1}\right)$ (in symbol, $T \in\left(H_{1}\right)$) if T satisfies the condition $\left(G_{1}\right)$ for $\tilde{\sigma}(T)$, that is,

$$
\begin{equation*}
\left\|(T-\lambda)^{-1}\right\| \leqq \frac{1}{\operatorname{dist}(\lambda, \tilde{\sigma}(T))} \tag{4}
\end{equation*}
$$

for any $\lambda \notin \tilde{\sigma}(T)$.
In this note, we shall construct operators satisfying the condition $\left(H_{1}\right)$ in $\S 2$ and apply them to study some relations between classes of non-normal operators in §3. In §4, we shall give two remarks on Luecke's principle of constructions of operators and his class \mathcal{R}.
2. Construction. We shall use Luecke's principle to construct operators satisfying the condition $\left(H_{1}\right)$, cf. also $\S 4$.

Theorem 1. If A is an operator and B is a normal operator with $\bar{W}(A) \subset \tilde{\sigma}(B)$, then $T=A \oplus B$ satisfies $\left(H_{1}\right)$.

Proof. By the hypothesis, we have

$$
\tilde{\sigma}(T) \supset \tilde{\sigma}(A) \cup \tilde{\sigma}(B)=\tilde{\sigma}(B) .
$$

Consequently, for any $\lambda \notin \tilde{\sigma}(T)$, we have

$$
\begin{aligned}
\left\|(T-\lambda)^{-1}\right\| & =\max \left[\left\|(A-\lambda)^{-1}\right\|,\left\|(B-\lambda)^{-1}\right\|\right] \\
& \leqq \max \left[\frac{1}{\operatorname{dist}(\lambda, \bar{W}(A))}, \frac{1}{\operatorname{dist}(\lambda, \sigma(B))}\right] \\
& \leqq \max \left[\frac{1}{\operatorname{dist}(\lambda, \bar{W}(A))}, \frac{1}{\operatorname{dist}(\lambda, \tilde{\sigma}(B))}\right] \\
& =\frac{1}{\operatorname{dist}(\lambda, \tilde{\sigma}(B))} \\
& \leqq \frac{1}{\operatorname{dist}(\lambda, \tilde{\sigma}(T))},
\end{aligned}
$$

so that $T \in\left(H_{1}\right)$.
Before to proceed further, we shall look at an elementary property of the hen-spectra of operators:

Proposition 2. $\tilde{\sigma}(T) \subset \operatorname{co\sigma } \sigma(T)$ for any T. Therefore, we have $\tilde{\sigma}(T) \subset \bar{W}(T)$.

Proof. Since $\operatorname{co} \sigma(T)$ is connected, we have

$$
(\operatorname{co} \sigma(T))^{c}=\left[\left(\operatorname{co} \sigma(T)^{c}\right]_{\infty} \subset\left[\sigma(T)^{c}\right]_{\infty} .\right.
$$

Hence we have

$$
\operatorname{co} \sigma(T) \supset\left(\left[\sigma(T)^{c}\right]_{\infty}\right)^{c}=\tilde{\sigma}(T)
$$

By Theorem A and Proposition 2, we have an another characterization of operators belonging to \mathcal{R} :

Theorem 3. $T \in \mathscr{R}$ if and only if $\bar{W}(T)=\tilde{\sigma}(T)$.
Proof. If $T \in \mathcal{R}$, then $\partial W(T) \subset \sigma(T)$ by Theorem A, so that $\sigma(T)$ includes the convex curve $\partial W(T)$. Hence we have $\bar{W}(T) \subset \tilde{\sigma}(T) \subset \bar{W}(T)$, or $\bar{W}(T)=\tilde{\sigma}(T)$. Conversely, if $\bar{W}(T)=\tilde{\sigma}(T)$, then we have $\partial W(T)$ $=\partial \tilde{\sigma}(T) \subset \sigma(T)$. Hence, by Luecke's theorem, we have $T \in \mathcal{R}$.

Now, we shall give an operator which has a finer property than that of Theorem 1:

Theorem 4. If A is an operator and B is a normal operator with $\bar{W}(A) \subset \sigma(B)$ and $\tilde{\sigma}(B) \neq \operatorname{co} \sigma(B)$, then $T=A \oplus B \notin \mathcal{R}$ but $T \in\left(H_{1}\right)$.

Proof. From Theorem 1, we have $T \in\left(H_{1}\right)$. We wish to show that $\bar{W}(T) \neq \tilde{\sigma}(T)$. We have

$$
\tilde{\sigma}(T)=\tilde{\sigma}(A) \cup \tilde{\sigma}(B)=\tilde{\sigma}(B) \neq \cos \sigma(B)=\bar{W}(B)=\bar{W}(T),
$$

so that we have $T \notin \mathcal{R}$.
Example. Let U be the bilateral shift of multiplicity 1 and B a normal operator with $\sigma(B)=\{\lambda ;|\lambda|=4,|\lambda-3|=5\}$. Put $A=U-3$ and $T=A \oplus B$. Then we have by [3; Prob. 68]

$$
\bar{W}(A)=\{\lambda ;|\lambda+3| \leqq 1\} .
$$

Hence $\bar{W}(A) \subset \sigma(B)$ and

$$
\bar{W}(T)=\{\lambda ;|\lambda|=4, \operatorname{Re} \lambda \leqq 0\} .
$$

On the other hand, it is clear that $0 \notin \tilde{\sigma}(T)$. From Theorem 4, we have $T \notin \mathcal{R}$ and $T \in\left(H_{1}\right)$.
3. Application. The following two theorems indicate the position of the class $\left(H_{1}\right)$ among the classes of seminormal operators:

Theorem 5. If an operator T satisfies $\left(G_{1}\right)$, then T satisfies $\left(H_{1}\right)$ too.

Proof. Comparing (4) with (1), we hare that $T \in\left(G_{1}\right)$ implies $T \in\left(H_{1}\right)$.

Theorem 6. If an operator T satisfies $\left(H_{1}\right)$, then T is a convexoid.
Proof. It is known in [5] that T is a convexoid if and only if T satisfies the condition (G_{1}) for $\operatorname{co} \sigma(T)$ in the sense of Saito. Hence Proposition 2 implies that T is a convexoid if $T \in\left(H_{1}\right)$.

Theorem 7. The class $\left(H_{1}\right)$ properly contains the class $\left(G_{1}\right)$.
Proof. We shall construct $T \in\left(H_{1}\right)$ using Theorem 1. Put

$$
A=\left(\begin{array}{ll}
0 & 2 \tag{5}\\
0 & 0
\end{array}\right)
$$

Then we have $\sigma(A)=\{0\}$ and $W(A)=D$ where D is the unit disk. Moreover, let U be the simple bilateral shift. Then, by [3; Prob. 68], we have $\sigma(U)=C$ and $\tilde{\sigma}(U)=D$ where C is the unit circle. Put $T=A \oplus U$. Then T satisfies $\left(H_{1}\right)$ by Theorem 1. Clearly, we have $\sigma(T)=\{0\} \cup C$. Furthermore, we have

$$
\left(A+\frac{1}{2}\right)^{-1}=2\left(\begin{array}{rr}
1 & -4 \\
0 & 1
\end{array}\right)
$$

If we put

$$
x=\binom{0}{1},
$$

then we have

$$
\left\|\left(A+\frac{1}{2}\right)^{-1} x\right\|=2 \sqrt{16+1}>2
$$

If $T \in\left(G_{1}\right)$, then we have

$$
2<\left\|\left(A+\frac{1}{2}\right)^{-1} x\right\| \leqq\left\|\left(A+\frac{1}{2}\right)^{-1}\right\| \leqq \frac{1}{\operatorname{dist}(-1 / 2, \sigma(T))}=2
$$

and this contradiction proves the theorem.
Remark. If $T \in\left(H_{1}\right)$ and $\sigma(T)$ is a connected set or a finite set, then T satisfies the condition $\left(G_{1}\right)$. Therefore, in the case of finite dimensional spaces, the condition $\left(H_{1}\right)$ coincides with the normality.

The above remark gives us an example of convexoids which does not belong to $\left(H_{1}\right)$, that is, a non-normal finite dimensional convexoid is the desired which is already known, cf. [2; Remark to Theorem 7]. Hence, the class $\left(H_{1}\right)$ is properly contained in the class of all convexoids.

The operator T in the proof of Theorem 7 belongs to \mathcal{R} by Theorem 3. Hence we have

Theorem 8. There is an operator in \mathscr{R} which does not satisfy the condition $\left(G_{1}\right)$.

On the other hand, we have
Theorem 9. If $T \in \mathcal{R}$, then T satisfies the condition $\left(H_{1}\right)$.
Proof. Suppose that $T \in \mathscr{R}$. Then we have for any $\lambda \notin \bar{W}(T)$

$$
\left\|(T-\lambda)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \bar{W}(T))}=\frac{1}{\operatorname{dist}(\lambda, \tilde{\sigma}(T))},
$$

by Theorem 3. Hence, we have $T \in\left(H_{1}\right)$.
An operator T is called a normaloid if $\|T\|=r(T)$ where $r(T)$ is the spectral radius of T :

$$
r(T)=\sup \{|\lambda| ; \lambda \in \sigma(T)\} .
$$

Also, T is called a numeroid if $W(T)$ is a spectral set for T in the sense of von Neumann, cf. [2]. In the remainder of this section, we shall discuss some relations between these classes and the class $\left(H_{1}\right)$.

Proposition 10. There are
(i) a normaloid which does not belong to $\left(H_{1}\right)$,
(ii) a numeroid which does not belong to $\left(H_{1}\right)$,
(iii) an operator in $\left(H_{1}\right)$ which is not a normaloid, and
(iv) an operator in $\left(H_{1}\right)$ which is not a numeroid.

Proof. Since a normaloid T needs not a convexoid, cf. [3], Theorem 6 implies (i) at once. By [2; Remark to Theorem 7],

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \oplus\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

is a non-normal numeroid if the triangle with vertices $\lambda_{1}, \lambda_{2}, \lambda_{3}$ contains the unit disk D. Hence, by the above remark, (ii) is proved. Let A be as in (5) and $B=U$ where U is the simple unilateral shift. Then, by Theorem 1, $A \oplus B=T \in \mathcal{R}$ so that $T \in\left(H_{1}\right)$ by Theorem 5. However, T is not a normaloid, since $\|T\| \geqq 2$ and $r(T)=1$ by the fact that $\sigma(T)$
$=\sigma(A) \cup \sigma(B)=D$. Hence we have (iii). Finally, (iv) is false and $T \in\left(H_{1}\right)$ is automatically a numeroid, then T is a normaloid, which contradicts (iii).
4. Appendix. Here we shall give to remarks: The one concerns with an extension of Theorem 1 according to the line of Saito's generalized growth condition and the other with Luecke's class \mathcal{R}.

The following theorem gives us a unified formulation of known results (compare Theorem 1 and [2; Theorem A]):

Luecke's principle. If A is an operator, X a closed set in the plane with $\bar{W}(A) \subset X$ and B a normal operator with $\sigma(B) \subset X$, then T $=A \oplus B$ satisfies $\left(G_{1}\right)$ for X in the sense of Saito.

Since the proof is completely analogous to that of Theorem 1, we shall omit it.

In the above, $\bar{W}(A) \subset X$ is essential ; we can not replace by $X \supset \sigma(A)$, as in the following

Proposition 11. If A does not satisfy $\left(G_{1}\right)$ for X which is a closed set with $\sigma(A) \subset X \subset \bar{W}(A)$ and $X \neq \bar{W}(A)$, then $T=A \oplus B$ does not satisfy $\left(G_{1}\right)$ for X whenever B is a normal operator with $\sigma(B) \subset X$.

Proof. By the hypothesis, we have a $\lambda \notin X$ such that

$$
\left\|(A-\lambda)^{-1}\right\|>\frac{1}{\operatorname{dist}(\lambda, X)}
$$

Hence, we have

$$
\begin{aligned}
\left\|(T-\lambda)^{-1}\right\| & =\max \left[\left\|(A-\lambda)^{-1}\right\|,\left\|(B-\lambda)^{-1}\right\|\right] \\
& =\max \left[\left\|(A-\lambda)^{-1}\right\|, \frac{1}{\operatorname{dist}(\lambda, \sigma(B))}\right]>\frac{1}{\operatorname{dist}(\lambda, X)} .
\end{aligned}
$$

Finally, we shall introduce a class of operators. Let Q be the set of all operators satisfying
(6)

$$
\tilde{\sigma}(T)=\cos \sigma(T)
$$

This is equivalent to state that $T \in Q$ if and only if $\partial \tilde{\sigma}(T)$ is a convex curve. By Theorem 3, $T \in \mathcal{R}$ implies $T \in Q$. In the converse direction, we shall show the following theorem which gives an another characterization of Luecke's class:

Theorem 12. $\mathcal{R}=\mathcal{C} \cap Q$ where \mathcal{C} is the set of all convexoids.
Proof. $R \subset \mathcal{C}$ is proved by Luecke [4] and $\mathscr{R} \subset Q$ is clear by the above. Hence $\mathcal{R} \subset \mathcal{C} \subset Q$. Conversely, if $T \in \mathcal{C} \cap Q$, then we have $\check{\sigma}(T)=\cos \sigma(T)=\bar{W}(T)$,
so that we have $\mathcal{C} \cap Q \subset \mathcal{R}$ by Theorem 3 .

References

[1] S. K. Berberian: An extension of Weyl's theorem to a class of not necessarily normal operators. Mich. Math. J., 16, 273-279 (1969).
[2] M. Fujii: On some examples of non-normal operators. Proc. Japan Acad., 47, 458-463 (1971).
[3] P. R. Halmos: A Hilbert Space Problem Book. Van Nostrand, Princeton (1967).
[4] G. R. Luecke: A class of operators on Hilbert space. Pacific J. Math., 41, 153-156 (1971).
[5] G. H. Orland: On a class of operators. Proc. Amer. Math. Soc., 15, 75-79 (1964).
[6] T. Saito: A theorem on boundary spectra. Acta Sci. Math., Szeged, 33, 101-104 (1972).
[7] J. G. Stampfii: Hyponormal operators and spectral density. Trans. Amer. Math. Soc., 117, 469-476 (1965).

