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22. Semi.linear Poisson’s Equations

By Yoshio KONISHI*)

Department ot Mathematics, University of Tokyo

(Comm. by KSsaku YOSIDA, M. J. A., Feb. 12, 1973)

1. Semi.linear Poisson’s equations. Let S be a separable,
locally compact, non-compact Hausdorff space, and Co(S) be the com-
pletion with respect to the maximum norm of the space o real-valued
continuous functions with compact supports defined on S. Co(S) is thus
a Banach lattice. 1) Assume that we are given a "non-negative" con-
traction semi-group {Tt}t>0 of class (Co) in Co(S) (see Phillips [11],
Hasegawa [5] and Sato [12]). We shall be concerned with the situation
in which

the infinitesimal generator A of {T,}>0 admits a densely defined
(1)

inverse A -1.
That is, we suppose that the semi-group {Tt}t>o admits a "potential
operator"V in the sense of Yosida [17] (see also Chapter XIII, 9 oi
Yosida [19])"

V= --A -1.
Now we introduce a nonlinear operator ) fl0 in Co(S) associated with

a strictly monotone increasing continuous function/" D(/)= (a, b)R,
--c<_aOb<_+c, such that fl(0)=0, lim(r)=--c if a:/:--c,

and that lim (r)-- +
r;b

( 2 ) D(flo)--{u e Co(S) u(s) e D() or any s e S},
(oU)(S) fl(u(s)), s e S, for u e D(fl0).

We consider the "semi-linear Poisson’s equation""
Au-floU-- f, f e Co(S).

Our theorem of the existence and uniqueness reads"
Theorem. The operator A--o admits a densely defined inverse

(n flo) .
Remark. It ,is shown in Yosida [18] that the semi-group in Co(R)

associated with the N-dimensional Brownian motion admits a potential
operator in his sense even in the recurrent cases, i.e., N= 1 or 2 (see
also Sato [13] and Hirsch [6], where one finds studies on the existence
o potential operators associated with spatially homogeneous Markov

*) Partly supported by Ffijukai Foundation.
1) We shall make use o the notation in Banach lattice. See, e.g., Chapter

XII, 3 of Yosida [19].
2) Throughout the paper the mappings are all single-valued.
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processes on R). Thus our result can be applied to the concrete semi-
linear Poisson’s equation"

1--Au-- (u)-- f2
in each R, N>/1. 3)

2. Proof of Theorem. We begin with the following.
Lemma. (i) The operator A--o is "dissipative (s)" in Co(S)"

( 3 )
r(u- v, (A fl0)u- (A ri0)v) 0

for all u, v D(A) D(flo) and 0
where, by definition,

r(f, g)-lim -l(llf +eg I-IIf ), f, g e Co(S).
0

In particular, A--rio is "dissipative""
(u--Au/oU)--(v--Av /floV)

for all u, v e D(A) D(flo) and > O.
(ii) The operator A--rio is "dispersive (s)" in Co(S)"

a((u- v) +, (A rio)U- (A rio)V) < 0
( 4 )

for all u, v D(A) D(flo) and 0
where, by definition,

a(f g)-- inf r(f, (g - k) /(- bf)), fO.
bE0,o)

kCCo(S),f/Ikl =0

In particular, A--rio is "dispersive""
II((u-Au+floU)-(v-Av +floV)} + I>

for all u, v e D(A) A D(flo) and O.
(iii) Moreover we have the range condition"

( 5 R(]I-A +rio)-- Co(S) whenever O.
Thus, by (i) and (iii), (I--A+flo)- exists and a contraction on

Co(S) for each 0. Besides, in view of (ii), each (I--A+fl0) -1 is
"order-preserving""
(6) fg implies ](I-A+o)-If(]I-A+flo)-lg.

Proof of Lemma. It is known that the operator A is dissipative
(s) (see Remark 3 of Hasegawa [5]) and dispersive (s) (Theorem 1 of
Sato [12])"

r(u, Au)O and a(u+,Au)O for ueD(A).
So is the nonlinear operator --rio"

r(u- v, fl0u + fl0v) < 0 and a((u- v) /, floU + roy) 0
for u, v e D(fl0), since, by 6.2 of Sato [12],

r(f, g) max (sgn f(s))g(s) f =/= 0
{se S; f (s) =llfll}

=llg f--O
and

3) Note that our interest consists in the unboundedness of the domain con-
sidered. Cf. Brezis-Strauss [3] (the Laplacian in RN does not satisfy the condition
(III) in 1 of [3]).
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a(f g) mx g(s) f >/O, f =/= 0

=0 f=0.
Because r(f, .) and a(f, .), or a fixed f, are both subadditive, we have
(3) and (4). It is easily seen that the dissipativity(s) and the
dispersivity(s) imply dissipativity and dispersivity respectively (cf.
Lemma 1 of Hasegawa [5] and Lemma 4.1 of Sato [12]). Finally we
prove (iii). (One can proceed as in Konishi [9].) We have only to
show (5) with 2-- 1 (see, e.g., Lemma 4 of Oharu [10]). Fix an arbitrary

f e Co(S). We define an everywhere defined monotone non-decreasing
continuous unction " D(O--R-R by

(/((I+/)-([I f [[)) if
fl(r)= fl(r) if r e O(fl) and

[fl.((I +)-(--II Yli)) if
Define the corresponding operator (fl00 in Co(S) by (2) with fl--flz. Thus
--(fl00 is everywhere defined continuous dissipative operator in Co(S).
Accordingly, by Theorem I of Webb [16] (see also Theorem 1 of Barbu
[1]), R(I--A +(fl00)=C0(S), i.e., there exists u e D(A) such that
( 7 ) u--Au+ (flOoU-- f.
On the other hand,

(u+ (flOoU--[] f I) +

---a((u+(flf)oU--l[ f I) +, u
a((u-- (I+ fix)-(ll f ]1)) +, Au+f--II f II) < 0

and, similarly,

Hence
(u+ (f)oU+ f I[)-[I < O.

lu(s)+flf(u(s))j<llfll for s e S.
Therefore u e D(A) D(flo) and (7) is written as

u--Au+oU-- f Q.E.D.
The following is a nonlinear version of a part of the abelian ergodic

theorems (see, e.g., Lemma I in Chapter VIII, 4 and also (2) in Chapter
XIII, 9 of Yosida [19]).

Proposition. Let be a (nonlinear) dissipative operator in a real
Banach space

(21--u) (21-- v)II > 2 u-- v II, for u, v e D() and 2 0
with

R(2I--)=2) for 2 O.
Then

(s) R(--)- {f e_; lim 2(2I-Z)- f-0}.,0

Proof. We denote by /the right-hand side of (8). /is closed
since 2(2I-Z)- are contractions. Set f e R(-). Note that

R(--) R(-- (I--)-)-- R(I-(I--)-).
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Hence there exists g e: satisfying f=g--(I--,_)-lg. By using the
"nonlinear resolvent equation" (cf., e.g., Lemma 5 of )haru [10] or
Lemma 1.2 of Crandall-Liggett [4]), we get

2(2I-)-f

2 (21--,_j)-f--(2I--)-(g+(I-- 1)(I-- )-lg)II

< f--g--(2--1)(I--t)-g

Thus f e /. Therefore R(--)c/=. Next we set f e. Then
f-- lim (f --2(2I--,)-f)

$o

lim (-- //(21--)-f) e R(-- //). Q.E.D.
I0

Proof of the Theorem. By Proposition, in order to prove
R(A--flo)--Co(S) we have to show
( 9 ) lim 2(2I--A +fl0)-f=0 for f e Co(S).

Note that, for 2 >0 and f e Co(S), we have by (6)
(I--A +flo)-f<2(2l--n +fl0)-f+ <2(2I--n)-f+,
2(2I--n +fl0)-lf/> 2(2I--n +fl0)-lf >/2(2I--A)-f

(one finds a similar inequality in Konishi [8]).
In particular, we have that

12(2I--A -+-flo)-fl<2(2I-A)-llf I, I>0, f e Co(S),
and, therefore, that

112(2I--A +flo)-If[l<l]2(2I-A)-[f[[[, I>0, f e Co(S).
Note that the condition (1) is equivalent to"

lira 2(21--A)-f=O for f Co(S)

(el. Proposition 1 in Chapter XIII, 9 of Yosida [19]). Thus we have
(9). Next we prove that A-0 is an injection"
Suppose that

Au flou--Av floV
or some pair u, v e D(A) D(flo). Then

v(u-- v, floU-- floV) v(u-- v, Au--Av)< O,
rom which ellows that u=v. Q.E.D.

Comment, Our Theorem might be expressed also in the ollowing
orm.

The semi-group {exp (t(A--fl0))}>0 admits a "nonlinear potential
operator" V"

V-(--A +flo)-
where {exp (t(A--0))}t>0 is the nonlinear order-preserving semi-group
of contractions on D(A)D(o)Co(S), generated in the sense of
Theorem I o Crandall-Liggett [4] (see also Theorem B of Konishi [7])"
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exp ((A--0)).f--m (I-- t---A + t--o) -f
lim

>/O, f e D(A) D(o). For the latter ormula ($he Lie-Tro$er produce
formula), see, e.g., Theorem 3.2 o Brezis-Pazy [2]. Cf. the proof of
Proposition (3.22) due to Brezis in Webb [16]. One can prove also that

exp ((A-o)).f-lim ((I- A) - (I+0)-)f,
O, f e D(A) D(o).
Further study. We can apply our techniques to obtain a result

similar to our Theorem in the ramework of Hilbert space L. In this
case need not be strictly monotone increasing. The study of this
direction is stimulated by the recent works of Yosida [20] and Sato [14].
We can make corresponding study also in Lv(I<p<) but no in L1;
Note that the semi-group in LP(R) (l<p<) associated with the
N-dimensional Brownian motion admits a potential operator in the
sense of Yosida but the corresponding semi-group in L(R) does no
(see Theorem 1.5 of Watanabe [15]). 4> See also the author’s paper"

Note on potential operators on L’ (in preparation).
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