19. On the Theorem of Cauchy-Kowalevsky for First Order Linear Differential Equations with Degenerate Principal Symbols

By Toshio Oshima
Department of Mathematics, University of Tokyo

(Comm. by Kôsaku Yosida, m. J. A., Feb. 12, 1973)

Let
(1)

$$
P=\sum_{i=1}^{n} a_{i}(x) \frac{\partial}{\partial x_{i}}+b(x)
$$

be a first order linear differential operator with analytic coefficients defined at the origin of C^{n}. In this note, we discuss the following problem: Consider the differential equation

$$
\begin{equation*}
P u=f . \tag{2}
\end{equation*}
$$

f and u being analytic functions at the origin, what condition should f satisfy for the existence of a local solution u of the equation (2) and how many solutions exist when f satisfies the condition? That is, our problem is to clarify the kernel and cokernel of the operator P. When $n=1$, Komatsu [2] and Malgrange [3] have a deep result for the index of the operator P, which is not necessarily of the first order.

Let \mathcal{O} be the stalk at the origin of the sheaf of holomorphic functions over C^{n}. Let \mathfrak{U} and \mathfrak{B} be the ideals of \mathcal{O} generated by $a_{1}(x), \cdots, a_{n}(x)$ and $a_{1}(x), \cdots, a_{n}(x), b(x)$ respectively. In the case when \mathfrak{H} is equal to \mathcal{O}, the answer to this problem is well-known as the theorem of Cauchy-Kowalevsky. In this note, therefore, we assume that \mathfrak{N} is a proper ideal of \mathcal{O}. Such equations are used by Hadamard [1] to construct the elementary solution of a second order linear partial differential equation and by Sato-Kawai-Kashiwara [4] to determine the structure of pseudo-differential equations. We want to have general theory about the equation of such type. First we give the following conditions to formulate a theorem. We discuss examples which do not satisfy these conditions later.
(A) $\quad \mathfrak{Q}$ is a proper and simple ideal of \mathcal{O}.

Let $M=\left(\partial\left(a_{1}, \cdots, a_{n}\right) / \partial\left(x_{1}, \cdots, x_{n}\right)\right)(0)$ be the Jacobian matrix of a_{1}, \cdots, a_{n} at the origin. Let $M^{*}=J_{1} \oplus \cdots \oplus J_{m} \oplus J_{1}^{\prime} \oplus \cdots \oplus J_{m^{\prime}}^{\prime}$ be the Jordan canonical matrix of M, where $J_{i}(1 \leqslant i \leqslant m)$ and $J_{j}^{\prime}\left(1 \leqslant j \leqslant m^{\prime}\right)$ are the matrices of the Jordan blocks of sizes N_{i} and N_{j}^{\prime} with eigenvalues $\lambda_{i} \neq 0$ and $\lambda_{j}^{\prime}=0$ respectively.
(B) i) $N_{j}^{\prime}=1\left(1 \leqslant j \leqslant m^{\prime}\right)$.
ii) There exists a real number θ, such that $\theta<\arg \lambda_{i}<\theta+\pi$ for $1 \leqslant i \leqslant m$, where we denote by $\arg \lambda_{i}$ the argument of complex number λ_{i}.
(C) \quad The equation $b(0)=0$ holds or $b(0)+\sum_{i=1}^{m} l_{i} \lambda_{i} \neq 0$ for arbitrary non-negative integers l_{1}, \cdots, l_{m}.
Remark. (C) holds if condition (B) ii) holds, $b(0) \neq 0$ and $\theta<\arg b(0)<\theta+\pi$ for θ of (B) ii).

Theorem. Assuming conditions (A), (B) and (C), we have the following conclusion.

$$
\text { Coker } P \simeq \mathcal{O} / \mathfrak{B} \text { and Ker } P \simeq \begin{cases}\mathcal{O} / \mathfrak{B}, & \text { if } \mathfrak{A}=\mathfrak{B}, \\ 0 & \text { if } \mathfrak{A} \neq \mathfrak{B} .\end{cases}
$$

That is, an analytic solution u of (2) exists locally if and only if $f \in \mathfrak{B}$. If $\mathfrak{A} \neq \mathfrak{B}, u$ is uniquely determined by f, and if $\mathfrak{A}=\mathfrak{B}$, there is a one-one correspondence between the solutions u and the Cauchy data $\left.u\right|_{V}$, where V is the variety defined by \mathfrak{B}.

Proof. Taking account of conditions (B) ii) and (C), there exists a positive number ε which satisfies

$$
\left|l_{1} \lambda_{1}+\cdots+l_{m} \lambda_{m}+b(0)\right| \geqslant\left(l_{1}+\cdots+l_{m}\right) \varepsilon
$$

for any non-negative integers l_{1}, \cdots, l_{m}. Multiplying P by a constant number, we may assume from the beginning ε is equal to 2 , i.e.,

$$
\begin{equation*}
\left|\sum_{i=1}^{m} l_{i} \lambda_{i}+b(0)\right| \geqslant 2 \sum_{i=1}^{m} l_{i} . \tag{3}
\end{equation*}
$$

Taking a different coordinate system, M is transformed into $G^{-1} M G$, where G is the Jacobian matrix of the coordinate transformation. Then, under a suitable coordinate system $x_{1}^{\prime}, \cdots, x_{n}^{\prime}, M$ is equal to M^{*} and $P=\sum_{i=1}^{n} c_{i}\left(x^{\prime}\right) \partial / \partial x_{i}^{\prime}+b\left(x^{\prime}\right)$. Let $k=N_{1}+\cdots+N_{m}, k^{\prime}=n-k$, K_{i} be equal to j if $N_{1}+\cdots+N_{j-1}<i \leqslant N_{1}+\cdots+N_{j}$ and δ_{i} be equal to 1 if there exists j such that $N_{1}+\cdots+N_{j-1}<i<N_{1}+\cdots+N_{j}$ and 0 otherwise. Considering condition (A) and (B) i), it is clear that \mathfrak{A} is generated by $c_{1}\left(x^{\prime}\right), \cdots, c_{k}\left(x^{\prime}\right)$. Now we define the following coordinate system $y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k^{\prime}}$:

$$
\begin{cases}y_{i}=c_{i}\left(x^{\prime}\right) / \lambda_{K_{i}}-\delta_{i} y_{i+1} & \text { for } 1 \leqslant i \leqslant k \\ z_{j}=x_{k+j}^{\prime} & \text { for } 1 \leqslant j \leqslant k^{\prime}\end{cases}
$$

Under this coordinate system,

$$
\begin{equation*}
P=\sum_{i=1}^{k} a_{i}(y, z) \frac{\partial}{\partial y_{i}}+\sum_{j=1}^{k^{\prime}} a_{j}^{\prime}(y, z) \frac{\partial}{\partial z_{j}}+b(y, z) \tag{4}
\end{equation*}
$$

where we denote by y and z coordinates y_{1}, \cdots, y_{k} and z_{1}, \cdots, z_{k}, respectively, and M is equal to M^{*} because

$$
\frac{\partial\left(y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k^{\prime}}\right)}{\partial\left(x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right)}(0)
$$

is the identity matrix, and \mathfrak{A} is generated by y_{1}, \cdots, y_{k}.
Case 1. $\mathfrak{X}=\mathfrak{B}$.

It is sufficient to show that when $f(0, z) \equiv 0$, there exists a unique solution u of (2) satisfying the initial condition $u(0, z)=v(z)$ for any v.

We define a semi-order on the set of pairs of multi-indices (α, β), where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right), \beta=\left(\beta_{1}, \cdots, \beta_{k^{\prime}}\right)$ and where α_{i} and β_{j} are nonnegative integers, in the following way:

We define $(\alpha, \beta)<\left(\alpha^{\prime}, \beta^{\prime}\right)$ when and only when
or

$$
\begin{array}{ll}
|\alpha|<\left|\alpha^{\prime}\right|, & \left(|\alpha|=\alpha_{1}+\cdots+\alpha_{k} \text { etc. }\right), \\
|\alpha|=\left|\alpha^{\prime}\right|, & |\beta|<\left|\beta^{\prime}\right|,
\end{array}
$$

or $\quad|\alpha|=\left|\alpha^{\prime}\right|, \quad|\beta|=\left|\beta^{\prime}\right|, \quad \sum_{i=1}^{k} i \alpha_{i}<\sum_{i=1}^{k} i \alpha_{i}^{\prime}$.
Set $a_{i}(y, z)=\sum_{\alpha>0} a_{i \alpha}(z) y^{\alpha}=\sum_{\alpha>0, \beta \geqslant 0} a_{i_{\alpha \beta}} z^{\beta} y^{\alpha}$ etc. Then easily we have the unique solution $u(y, z)=\sum_{\alpha \geqslant 0} u_{\alpha}(z) y^{\alpha}=\sum_{\alpha \geqslant 0, \beta \geqslant 0} u_{\alpha \beta} z^{\beta} y^{\alpha}$ of a formal power series under the initial condition $u_{0}(z)=v(z)$ in the following way. Let g be the ideal of the ring of formal power series generated by all $y^{\alpha^{\prime}} z^{\beta^{\prime}}$ which satisfy $\left(\alpha^{\prime}, \beta^{\prime}\right)>(\alpha, \beta)$. Then we have

$$
\begin{aligned}
P\left(u_{\alpha \beta} z^{\beta} y^{\alpha}\right) & \equiv \sum_{i=1}^{k}\left(\lambda_{K_{i}} y_{i} \frac{\partial}{\partial y_{i}}+\delta_{i} y_{i+1} \frac{\partial}{\partial y_{i}}\right) u_{\alpha \beta} z^{\beta} y^{\alpha} \quad \bmod g \\
& \equiv u_{\alpha \beta} \sum_{i=1}^{k} \alpha_{i} \lambda_{K_{i}} z^{\beta} y^{\alpha} \quad \bmod \mathfrak{g},
\end{aligned}
$$

because \mathfrak{A} is generated by $y_{1}, \cdots, y_{k}, M=M^{*}$ and $b(y, z) \in \mathfrak{A}$. Therefore, comparing the coefficients of $z^{\beta} y^{\alpha}$ of both sides of the equation (2), we can determine $u_{\alpha \beta}$ by (5) inductively:

$$
\left\{\begin{array}{c}
\left(\sum_{i=1}^{k} \alpha_{i} \lambda_{K_{i}}\right) u_{\alpha \beta}=\text { a number determined only by } u_{\alpha^{\prime} \beta^{\prime}} \text { which satisfy } \tag{5}\\
\text { the relation }\left(\alpha^{\prime}, \beta^{\prime}\right)<(\alpha, \beta) .
\end{array}\right.
$$

Then we can prove by the method of majornant that u is analytic at the origin. In fact, for suitable positive numbers r, C and C^{\prime} we have

$$
\left\{\begin{array}{ll}
a_{i}(y, z)-\lambda_{K_{i}} y_{i}-\delta_{i} y_{i+1} \ll \frac{C s(s+t)}{r-(s+t)} & \text { for } 1 \leqslant i \leqslant k, \tag{6}\\
a_{j}^{\prime}(y, z) \ll \frac{C s(s+t)}{r-(s+t)} & \text { for } 1 \leqslant j \leqslant k^{\prime}, \\
b(y, z) \ll \frac{C s}{r-(s+t)}, & v(z) \ll \frac{C^{\prime}}{r-t},
\end{array} \quad f(y, z) \ll \frac{C^{\prime} s}{r-(s+t)}, ~ l\right.
$$

where we define $s=y_{1}+\cdots+y_{k}, t=z_{1}+\cdots+z_{k^{\prime}}$. Taking account of (3), (5) and (6), we have easily the relation $\varphi \gg u$ if a formal power series φ satisfies

$$
\left\{\begin{array}{c}
P^{*} \varphi \gg \frac{C^{\prime} s}{r-(s+t)} \quad \text { and } \quad \varphi(0, z) \gg \frac{C^{\prime}}{r-t}, \tag{7}\\
\text { where } P^{*}=\sum_{i=1}^{k}\left(2 y_{i}-\frac{C s(s+t)}{r-(s+t)}\right) \frac{\partial}{\partial y_{i}}-\sum_{i=1}^{k-1} y_{i+1} \frac{\partial}{\partial y_{i}} \\
\quad-\frac{C s(s+t)}{r-(s+t)} \sum_{i=1}^{k^{\prime}} \frac{\partial}{\partial z_{j}}-\frac{C s}{r-(s+t)}
\end{array}\right.
$$

On the other hand, the solution φ of

$$
\left\{\begin{array}{c}
\left(1-k \frac{C(s+t)}{r-(s+t)}\right) \frac{\partial \varphi}{\partial s}-k^{\prime} \frac{C(s+t)}{r-(s+t)} \frac{\partial \varphi}{\partial t}-\frac{C}{r-(s+t)} \varphi \tag{8}\\
=\frac{C^{\prime}}{r-(s+t)}, \quad \varphi(0, t)=\frac{C^{\prime}}{r-t}
\end{array}\right.
$$

is analytic at the origin, which is clear by the theorem of CauchyKowalevsky, so we come to the conclusion, because φ satisfies (7). In fact,

$$
P^{*} \varphi=y_{1} \frac{\partial \varphi}{\partial s}+\frac{C^{\prime} s}{r-(s+t)} \gg \frac{C^{\prime} s}{r-(s+t)} \quad \text { and } \quad \varphi(0, z)=\frac{C^{\prime}}{r-t}
$$

Case 2. $\mathfrak{U} \neq \mathfrak{B}$.

It is sufficient to show that there exists a unique solution u of (2) when f belongs to \mathfrak{B}.

First we have by (5)' the unique solution of a formal power series as in Case 1: $\left\{\begin{array}{l}u_{0}(z)=f_{0}(z) / b_{0}(z), \text { which is analytic because } f \in \mathfrak{B}, \\ \left(\sum_{i=1}^{k} \alpha_{i} \lambda_{K_{i}}+b(0)\right) u_{\alpha \beta}=\text { a number determined only by } u_{\alpha^{\prime} \beta^{\prime}} \text { which } \\ \text { satisfy the relation }\left(\alpha^{\prime}, \beta^{\prime}\right)<(\alpha, \beta), \text { where we use the same } \\ \text { notations as in Case } 1 .\end{array}\right.$
We have the following majorant series as in Case 1:
$(6)^{\prime}\left\{\begin{array}{l}f(0, z) / b(0, z) \ll \frac{C^{\prime}}{r-t}, \quad f(y, z)-f(0, z) \ll \frac{C^{\prime} s}{r-(s+t)}, \\ b(y, z)-b(0,0) \ll \frac{C(s+t)}{r-(s+t)} \text { and the others are the same as in } \\ \text { Case 1. }\end{array}\right.$
As in Case 1, we can prove the existence of φ which is analytic at the origin and satisfies

$$
\begin{aligned}
& P^{*} \varphi \gg \frac{C^{\prime} s}{r-(s+t)} \quad \text { and } \quad \varphi(0, z) \gg \frac{C^{\prime}}{r-t}, \\
& P^{*}=\sum_{i=1}^{k}\left(2 y_{i}-\frac{2 C s(s+t)}{r-(s+t)}\right) \frac{\partial}{\partial y_{i}}-\sum_{i=1}^{k-1} y_{i+1}^{k} \frac{\partial}{\partial y_{i}}-\frac{C s(s+t)}{r-(s+t)} \sum_{j=1}^{k^{\prime}} \frac{\partial}{\partial z_{j}} .
\end{aligned}
$$

Considering (3), (5) ${ }^{\prime}$, (6) $)^{\prime}$, (7) ${ }^{\prime}$ and $z^{\beta} y^{\alpha} \ll s \sum_{i=1}^{k}\left(\partial / \partial y_{i}\right) z^{\beta} y^{\alpha}$ for $|\alpha|>0$, we see that φ is a majorant series of u, so u is analytic. This completes the proof of the theorem.

We give some examples which do not satisfy (A), (B) or (C).

1) $P=x_{1} \frac{\partial}{\partial x_{1}}+x_{2}^{2} \frac{\partial}{\partial x_{2}}, \quad \operatorname{Ker} P \simeq \boldsymbol{C}, \quad \operatorname{Im} P \nexists x_{1} x_{2}$.
2) $P=x_{1} \frac{\partial}{\partial x_{1}}+x_{2}^{2} \frac{\partial}{\partial x_{2}}+1, \quad \operatorname{Ker} P=0, \quad \operatorname{Im} P \nexists x_{1} x_{2}, x_{2}$.
3) $P=x_{2} \frac{\partial}{\partial x_{1}}+1, \quad \operatorname{Ker} P=0, \quad \operatorname{Im} P \nexists\left(1-x_{1}\right)^{-1}$.
4) $P=x_{2} \frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{2}}, \quad \operatorname{Ker} P \ni x_{2}^{2}-2 x_{1} x_{3}, \quad \operatorname{Im} P \nexists x_{2}^{2}$.
5) $P=x_{2} \frac{\partial}{\partial x_{1}}+x_{4} \frac{\partial}{\partial x_{3}}$,

Ker $P \ni x_{1} x_{4}-x_{2} x_{3}, \quad \operatorname{Im} P \nRightarrow x_{1} x_{4}$.
6) $P=x_{2} \frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{3}}$,

Ker $P=\left\{f\left(x_{2}\right) ; f \in \mathcal{O}_{1}\right\}$,
$\operatorname{Im} P \not \not \nexists x_{3}\left(1-x_{1}\right)^{-1}$, where we denote by \mathcal{O}_{1} the stalk at the origin of the sheaf of holomorphic functions over C^{1}.
7) $P^{\prime}=P+1$, where P is the same as in 4), 5) or 6 ,
$\operatorname{Ker} P^{\prime}=0, \quad \quad \operatorname{Im} P^{\prime} \nRightarrow\left(1-x_{1}\right)^{-1}$.
8) $P=x_{1} \frac{\partial}{\partial x_{1}}-x_{2} \frac{\partial}{\partial x_{2}}, \quad \operatorname{Ker} P \simeq \operatorname{Coker} P \simeq\left\{f\left(x_{1} x_{2}\right) ; f \in \mathcal{O}_{1}\right\}$.
9) $P=x_{1} \frac{\partial}{\partial x_{1}}-\lambda x_{2} \frac{\partial}{\partial x_{2}}, \quad$ where λ is a positive irrational number,

Ker $P \simeq C$. If $f(0)=0$, the equation $P u=f$ has a solution of a formal power series, but it is a problem of Diophantine approximation whether the series converges or not. Let a_{n}, b_{n} and λ be numbers satisfying $a_{1}=1, a_{n+1} \geqslant 2 a_{n}!, \lambda=\sum_{n=1}^{\infty} 1 / a_{n}$ and $b_{n}<a_{n} \lambda<b_{n}+1$, where a_{n} and b_{n} are integers, and f be equal to $1-\left(1-x_{1}-x_{2}\right)^{-1}$. Then the formal solution is not analytic because its coefficient of $x_{1}^{b_{n}} x_{2}^{a_{n}}$ is larger than a_{n} !. On the other hand, when λ is an algebraic number, we see that the formal solution is always analytic at the origin by the theorem of Roth.
$P=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}-1, \quad$ Ker $P \simeq \operatorname{Coker} P \simeq\left\{C x_{1}+C^{\prime} x_{2} ; C, C^{\prime} \in C\right\}$.
Remark. In the case 1), 2), 3), 6) and 7), a similar result holds as in the theorem if we think P in the category of formal power series, for instance, in 3), $u=\sum_{i, j \geqslant 0}(-1)^{j}((i+j)!/ i!) x_{1}^{i} x_{2}^{j}$ satisfies $P u=\left(1-x_{1}\right)^{-1}$.

We give finally the following examples satisfying (A), (B) and (C).
11)

$$
\begin{aligned}
& P=\left(x_{1}+x_{2}\right) \frac{\partial}{\partial x_{1}}+\left(x_{2}+x_{3} x_{4}\right) \frac{\partial}{\partial x_{2}}+2 x_{3} \frac{\partial}{\partial x_{3}}+x_{2} \frac{\partial}{\partial x_{4}}, \\
& \text { Ker } P \simeq \text { Coker } P \simeq\left\{f\left(x_{4}\right) ; f \in \mathcal{O}_{1}\right\} \text {, } \\
& P^{\prime}=P-3 / 2, \quad \operatorname{Ker} P^{\prime}=\operatorname{Coker} P^{\prime}=0 \text {, } \\
& P^{\prime \prime}=P+x_{3}+x_{4}^{2}, \quad \text { Ker } P^{\prime \prime}=0, \text { Coker } P^{\prime \prime} \simeq\left\{C+C^{\prime} x_{4} ; C, C^{\prime} \in C\right\} .
\end{aligned}
$$

References

[1] Hadamard, J.: Lectures on Cauchy Problems. Reprinted by Dover (1952).
[2] Komatsu, H.: On the index of ordinary differential operators. J. Fac. Sci. Univ. Tokyo, Sec. IA, 18, 379-398 (1971).
[3] Malgrange, B.: Remarques sur les points singuliers des équations différentielles. C. R. Acad. Sc., Paris, 273, 1136-1137 (1971).
[4] Sato, M., T. Kawai, and M. Kashiwara: Microfunctions and pseudo-differential equations (to appear in Proceeding of Katata Conference 1971, Lecture Notes in Math., Springer).

