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1. Introduction. Let (M, g, J) be a Khlerian manifold with
almost complex structure J and Kiihlerian metric tensor g. By
R-----(R), (R)=(R), and S we denote the Riemannian curvature
tensor, the Ricci curvature tensor, and the scalar curvature, respec-
tively. By dM we denote the volume element of (M, g, J). By z(M)
we denote the Euler-Poincar characteristic of M. By Vol (M) we
denote the total volume of (M, g, J).

Main theorem. Let (M,g,J) be a (real) 4-dimensional compact
Kihlerian manifold. Then the following inequality holds"

(1.1) z(M) >_ 9621I;S2dM-6(2--);[R--(S/4)g][R--(S/4)g]dM1
where is an arbitrary constant < 1. The equality holds if and only

if (M, g, J) is of constant holomorphic sectional curvature.
Furthermore, if (M, g, J) is an Einstein space, then

(1.2) 96z2z(M) >_ S Vol (M)
holds. The equality holds, if and only if (M, g, J) is of constant holo-
morphic sectional curvature.

We give an outline of the proof. First we need to find out in-
equalities concerning (RR), (RR) and S, such that the equality
implies constancy of holomorphic sectional curvature. For this pur-
pose we give a new characterization of the Weyl’s conformal curvature
tensor in 3, and in the next section we give a characterization of the
Bochner curvature tensor. In this process we have the best inequality
(4.14).

2. Preliminaries. Let (M, g) be a Riemannian manifold o di-
mension m. By 7 we denote the Riemannian connection with respect
to g. If R=k(gg--gg) holds on M (at x, resp.) or a real
number k, (M, g) is said to be of constant curvature (at x, resp.). We
put
(2.1) A(g)--RR--(2/(m--1))RR,
(2.2) B(g)--RR --(1/m)S2.
Then A(g)>_O holds; the equality holds on M (at x, resp.) if and only if
(M, g) is of constant curvature (at x, resp.). B(g) >_ 0 holds the equal-
ity on M is equivalent to the fact that (M, g) is an Einstein space (cf.
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for example, Barger [3]).
A (1,3).tensor field D--- (D) is called curvature-like, if
[i D.----D.,

h[ii] D--D (whereD gD),
[iii] D,+D,/D=O,
[iv] VD,+VD+VD,=O.

The Riemannian curvature tensor R satisfies [i] [iv]. if a tensor field
D satisfies [i], [ii] and [iii], then we call D a semi-curvature-like tensor

Dfield. For brevity we treat D in the covariant form D,=g,a ,.
If a tensor field D is expressed as a sum of tensor fields each of which
contains just one of R**** (the Riemannian curvature tensor), R** (the
Ricci curvature tensor) and S, then we say that D is of curvature de-
gree 1.

Proposition 2.1. In a Riemannian manifold (M, g), every semi-
curvature-like tensor field D of curvature degree 1 which is constructed
by (R****, R**, S, g**) is of the form"

(2.3) D,,--aR,+ b(Rg, Rg,+gR, gR,)
+c(gg-g,g,)S,

where a, b, c are scalars on M.
:o A characterization of the Weyl’s conformal curvature tensor.

C is givenThe Weyl’s conformal curvature tensor C=(C), C=g ,
by

(3.1) C R+b(Rg Rg+gRt gR)
+c(gg-gg)S,

where b 1/(m-2) and c 1/(m- 1)(m- 2).

Proposition :.1. Let D be a tensor field defined by (2.3). Then
the following conditions (P) and (Q) are equivalent.

(P) D=0 at x, if and only if (M, g) is of constant curvature at x,
(Q) a+2(m-1)b+m(m-1)c=O, aO, a+(m-2)b:/:O at x,
We notice that the Weyl’s conformal curvature tensor satisfies

a+(m-2)b=O. If D is a tensor field defined by (2.3) and satisfies (P)
or equivalently (Q), then the inner product (D,D)--(DD) is given
by

(D D) aRR + [8ab +4(m-2)b]RR
(3.2) + [4ac +4b + 8(m-- 1)be +2re(m-- 1)c]S

aA(g) + [2a /(m- 1) + 8ab +4(m-2)b]B(g).
For a Riemannian manifold (M, g), we define _q) and -q)0 by

_q)= [the set of all semi-curvature-like tensor fields of curvature de-
gree 1 which are constructed by (R****, R**, S, g**) such that a= 1].

.q)0=[the subset of _q) composed of elements D such that D=0 is
equivalent to the fact that (M, g) is of constant curvature].

Then D e-q)0 is denoted by the parameter b. For any element D
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--D(b) e )o, we have
(3.3) (D,D)=A(g)+[2/(m--1)+8b+4(m-2)b]B(g)>_O.
The coefficient of B(g) satisfies
(3.4) 2/(m-1)+Sb+4(m--2)b2> -2m/(m--1)(m--2).
In (3.4), (the left hand side)-(the right hand side)-*0 as b--*-1/(m-2).

Theorem :.2. In a Riemannian manifold (M, g), the Weyl’s con-

formal curvature tensor C is characterized by C e such that
C=the limit of {D(b)e 0} such that (D(b), D(b))-in.

4o A characterization of the Bochner curvature tensor. Let
(M, g, J) be a Kihlerian manifold. J and g satisfy

r__(4.1) grsJ[J.= gj, JrJj --and/7J.--0. We need the following identities (cf. Yano [10])"
(4 2) R JJ-Rjr8, RIcl ijsJr= --RJ,
(4.3) RJJ -Rs, RrJ= -RJ[,
(4,4) RJ-2J[R,
(4.5) 2RJ RjJ,
where J-Jg and J=grtJ.

As a proposition similar to Proposition 2.1, after some complicated
calculations, we have

Proposition 4.1. In a Kghlerian manifold (M,g,J) every semi-
curvature-like tensor field D of curvature degree 1 which is constructed
by (R****, R**, S, g**, J$) is of the form"

D--aR+b(Rg Rjg+gR gR)
+c(RJ;J-RrJ[J+JRJ[-JjtRJ(4.6)
2JRJ 2JRJ)

+d(JJ J]J 2JJt)S- e(g g gg)S,
where a, b, c, d, e are scalars on M.

The Bochner curvature tensor B-(B) is given by (cf. Tachibana
[7], Bochner [5])

B. R. (1/(m/4))(R3-R+gR--gtR
+RjrJJ--RJJ+JRrJ -JRrJ(4.7)

2RJJ 2RJJ)
+(1/(m+2)(m+4))(g-gjt+JJ-Jt

A Khlerian manifold (M, g, J), m_>4, is of constant holomorphic sec-
tional curvature H at x if and only if
(4.8) R-(H/4)[(gg-gg)/(JJ-JJt-2JJ)]
holds at x for a real number H. Then R and S are given by

(4.9) 4R-(m+2)Hg, 4S-m(m+2)H.
Subtracting the right hand side rm the let hand side o (4.8), apply-
ing (4.9), and taking the inner product E(g, J) with itself, we have an
inequality"

(4.10) E(g, J)-RR-[8/m(m+2)]$2 >_ 0.
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The equality holds (at x, resp.) if and only if (M, g, J) is of constant
holomorphic sectional curvature (at x, resp.).

Proposition 4.2. Let D be a tensor field defined by (4.6). Then
the following conditions (P*) and (Q*) are equivalent"

(P*) D=0 at x, if and only if (M, g, J)is of constant holomorphic
sectional curvature at x,

(Q*) a+2(m-1)b+6c+3md+m(m-1)e-O,
(m+2)(2b +me) a (m+2)(2c+ rod),
aO, a+(m--2)b+6cO hold at x.

Let D be a tensor field defined by (4.6) satisfying (P*) or equiva-
lently (Q*). Then we have

(D, D)--aE(g, J)
(4.11) + [Sab +24ac +4(n-2)b +48bc+12(m+2)c]B(g) >_ O.
For a Khlerian manifold (M, g, J) we define _q)* and -q)0* by

_q)*=[the set of all semi-curvature-like tensor fields of curvature
degree I constructed by (R****, R**, S, g**, J**) such that a- 1].

0" [the subset of _q)* composed of elements D such that D=0 is

equivalent to the fact that (M, g, J) is of constant holomorphic sectional
curvature].

For a= 1, the coefficient of B(g) of (4.11) satisfies
(4.12) 8b+24c+4(m--2)b+48bc+12(m+2)c 16/(m+4).
In (4.12), (the left hand side)-(the right hand side)-0 as b, c---l/(m
+4) or m>_ 6 as 2b +6c- 1 or m 4.

Theorem 4.:. The Bochner curvature tensor is characterized by
(1) for m>_6, B=the limit of (D(b, c)e )o*} such that (D, D)-inf,

(b,c)

(2) for m=4, B=the limit of {D(b, c)e )o*} such that (D, D)-inf.
(b =c)

Theorem 4.4. In a Kihlerian manifold (M, g, J) we have
(4.13) E(g,J)--[16fl/(m+4)]B(g)>_O, i.e.,

(4.14) RR--[16fl/(m+4)]RR
+ [(16(m+2)fl- 8(m+4)) /m(m+2)(m+4)]S_ 0,

where is a constant 1. The equality holds on M (at x, resp.), if
and only if (M, g, J) is of constant holomorphic sectional curvature (at
x, resp.).

5. Euler.Poincar characteristics of 4.dimensional compact

Kihlerian manifolds. Let (M, g, J) be a (real) 4-dimensional compact
Khlerian manifold. Every Khlerian manifold is orientable. Then
the Gauss-Bonnet ormula is

(5.1) [RR--4RR +S]dM=32zz(M)

(cf. or example, Berger [3]). Integrating (4.14) with m--4, we have

(5.2) f[RR-2RR +((3fl- 2)/6)S]dM_O.
3
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Eliminating RiR from (5.1) and (5.2) we have the main theorem.
6. Remarks. ( I The Riemannian case of (1.2) is (cf. Avez [2],

Bishop-Goldberg [4]) For a compact orientable Einstein space (M, g),

192zz(M)

_
S Vol (M),

where the equality holds if and only if (M, g) is of constant curvature.
(II) For the Riemannian case of (1.1), see Tanno [9].
(III) For the Bochner curvature tensor, see [5], [7], [8], etc.

Reerences

1 A. Avez: Applications de la formule de Gauss-Bonnet-Chern aux varits
quatre dimensions. C.R. Acad. Sci. Paris, 2.6, 5488-5490 (1963).

2 : Characteristic classes and Weyl tensor: Applications to general rela-
tivity. Proc. Nat. Acad. Sci., 66, 265-268 (1970).

3 M. Berger: Le spectre des varits riemanniennes. Rev. Roum. Math.
Pures et Appl., 13, 915-931 (1968).

[4] R. L. Bishop and S. I. Goldberg: Some implications of the generalized
Gauus-Bonnet theorem. Trans. Amer. Math. Soc., 112, 508-535 (1964).

[5 S. Bochner: Curvature and Betti numbers. II. Ann. Math., SO, 77-93
(1949).

6 S. Kobayashi and K. Nomizu: Foundations o.f Differential Geometry, Vol. I,
II. Intersci. Pub. (1963), (1969).

7 S. Tachibana: On the Bochner curvature tensor. Nat. Sci. Rep. Ochano-
mizu Univ., 18, 15-19 (1967).

8 S. Tachibana and R. C. Liu: Notes on K/hlerian metrics with vanishing
Bochner curvature tensor. KSdai Math. Sem. Rep., 22, 313-321 (1970).

9 S. Tanno: Euler-Poincar characteristics and curvature tensors (to ap-
pear).

[10] K. Yano: Differential Geometry on Complex and Almost Complex Spaces.
Pergamon Press (1965).

[11] K. Yano and S. Bochner: Curvature and Betti numbers. Ann. Math. Stud-
ies No. 32, Princeton (1953).


