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1. Introduction. We consider the Cauchy problem for the
equation

(1 1) 3tu-- 3xj(a(x, t)3xu)-- b(x, t)3ju--c(x, t)u
j,k=l

=3tu--Au-- f
(x, t) in Rnx [0, ) with the initial-value
(1.2) u(x, 0) u0(x),
where a(x, t), b(x, t), c(x, t) are real-valued smooth functions. We
assume that (a)l.lkn is symmetric and satisfies the condition"
or any (x, t)

(1.3) , a(x, t)>_O for all e Rn.
j,k=l

O. A. Olelnik has treated this problem (see [3] and [4]). Her
method consists of the following procedure (elliptic regularization)"
Instead o (1.1), the following equations (depending on a positive para-
meter e) in G--R [0, T]
(1.4) tu- zlu- Au f
are considered. Let u be the solution of (1.4) with the given initial-
value Uo(X) e L(R) and f(x, t) e L(G). Then it is shown that {u(x, t)}
is bounded in L(G). Then a weak limit of them, as -. +0, gives the
desired solution u(x,t)e L(G). The uniqueness of the solution is
proved. She also proved the smoothness of u, assuming the smooth-
hess of u0 and f.

Contrary to the above point of view, we regard (1.1) as evolution
equation. More precisely, we want to show the existence of the unique

"_q)’ of (1.1)-(1 2) for any f(x, t) e Et(Lsolution u(x, t) e
and any initial-value Uo(X) e L2.*

Our approach is based on the semi-group theory. Instead of
elliptic regularization, we use Friedrichs’ mollifier. Its property (see

*) Throughout this paper, we use the following notation: x=(x,...,Xn). 3t
=/t, --xj=/x, =[. ., where =(1," ,n). L’=L’(Rn). u(x) e .q)’ means
that its derivatives (in the sense of distribution) u up to order m belong to
L. .q)i is the dual space of -q)L and sometimes we denote it by -q)L (X)e
means that its derivatives 9 up to order m are continuous and bounded in R.
f(t) e 8t(_q)L (or .)) means that t--q(t) e -q)L (or _’) is continuously differentiable
up to order k.



230 K. I(ARI [Vol. 49,

Lemma) gives immediately the desired result (see Theorem 1). The
smoothness can be obtained in the following form" when Uo(X)e

m-2and f(x, ) e (_q),), the solution u(x, t) belongs to e (.q)) ( (_q) ).
It seems to us that our method is more natural than the one rely-

ing on elliptic regularization and will be useful to other problems. A
forthcoming paper will give the detailed proof including some other
results.

2. Statement of results. Let a(x, t) c C( ) b(x, ) e C()
c(x, t) e C( ). We assume the condition (1.3). Then we have the
following theorem.

Theorem 1. For any initial-value Uo(X)eL and any f(x, t)e(L ),
()) of the Cauchythere exists a unique solution u(x, ) e t(L)

problem (1.1)-(1.2).
To prove this, following propositions are essential. The first one

is the energy inequality. The second one shows that Hille-Yosida’s
theorem is applicable.

()) beProposition 1 Let f(x t) e (L and u(x, t) e C(L)
the solution of (1.1). Then it holds for any t (O<_t<_T)

(2.1) u(t) <-- err u(O)11 +.[o er(t-) f(s) ds,

where . is a constant which may depend on T but does not depend on
u and f.

Now we assume coefficients be functions of only x. Then we can
obtain the following proposition.

Proposition 2. Take the domain of definition (A) of A as follows"
(2.2) (A)={u; u e L, Au e L}.
Then, for large , (2--A) defines a one-to-one sur]ective mapping of
(A) onto L. Moreover there exists a constant fl such that

1 for any ft.(2.3) (--A)- L,)<-_
If we use the following lemma, these propositions can be proved

in the same way as hyperbolic equation (see [2], 2, 4 in Chapter 6).
Lemma. Let p. be Friedrichs’ mollifier, where we assume p(x)

even function. Let a(x) e

_
be real-valued function, and let u(x) e L.

Then it holds for any
1) ]Re (u, [., a(x)]u)l<_C llull,
2) Re (u., [p,,, a(x)]u)-O as - +0,
where u stands for p.u, [p,, a(x)]u=p.(a(x)u}-a(x)p,,3u, and C
is a constant independent of u and .

Proof of Lemma. Consider only the case of ],]--2, because, in
the case of I,]_<1, 1) and 2) are clear by Friedrichs’ lemma. We denote

by 33. By Taylor expansion
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[p,,, a(x)]u-- a((x)(xp3,3u
(2.4) 1+, -. Ja,(x, y)(x-- y)"p.(x-- y)3vu(y)dy.

At first take the l-st term of (2.4).
--2 Re (u., a()(x)(xp.),3u)=(a(,)(x)(xp3,3u, u.)

(2.5) +(u,, [(xp),, a()(x)]u)+(u., (xp),{a(,)(x)u})
+((xp3,u, [a()(x), p,]u),

where we used the relations that ((xp.),u, v)=--(u, (xp3,v) and that
(p.,u, v)=(u, p,v). These all terms in the right-hand side of (2.5) can
be majorized by

iuii ii(x.),uii+ E uil ll[a,)(x). (x),]ull.
i,j= ilK2i=

In the same way as Friedrichs’ lemma, we can show for ,(],] 2)
(xp.),3u]], [a()(x), (xp.),]3u][ const. ul],

l(xp.),u. [a")(x), (xp.),]ul0 as +0.
Next we consider the 2-rid term of (2.4). Denote it by R,u.

1 [{a,(x, y)(x-y)%(x-y)}u(y)dy
(. 1

If we note that [(zp)(z)ldz<eonst. (independent of s), the
lull2 ll=2

same reasoning as in the proof of Friedriehs’ lemm gives

Thus the proo2 is completed.
At the end we state the theorem concerning the smoothness o2 the

solution. Let a(x, t) e (+) b(x, t) e :(+) c(x, t) e (),
where m=0, 1,2, .... We assume the condition (1.3). Then we have
the 2ollowing theorem.

Theorem 2. For any initial-value uo(x)e and any f(x,t)eC(O,
there exists a unique solution u(x, t)e () :(:) of the Cauchy
problem (1.1)-(1.2).
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