88. An Example of Temporally Inhomogeneous Scattering

By Atsushi Inoue
Department of Mathematics, Faculty of Sciences, University of Tokyo (Comm. by Kôsaku Yosida, m. J. A., June 12, 1973)

§ 1. The result. Consider a system of linear partial differential equations

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\sum_{j=1}^{n} A_{j}(x, t) \frac{\partial u(x, t)}{\partial x_{j}}+B(x, t) u(x, t) . \tag{1.1}
\end{equation*}
$$

Here $u=\left(u_{1}, \cdots, u_{N}\right)$ is an N-vector of unknown functions of x and $t ; A_{j}(x, t)$ and $B(x, t)$ are $N \times N$ matrix functions, and $A_{j}(x, t)$ are assumed to be Hermitian symmetric.

In order to guarantee the existence and the uniqueness of the solution $u(x, t) \in \mathcal{E}_{t}^{1}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right) \cap \mathcal{E}_{t}^{0}\left(H^{1}\left(\boldsymbol{R}^{n}\right)\right)^{1)}$ of (1.1) with Cauchy data $u(x, 0)$ $=u_{0}(x) \in H^{1}\left(\boldsymbol{R}^{n}\right)$, we assume the following (see [5], [6]):
(I) (a) The maps $t \mapsto A_{j}(\cdot, t)$ are continuous on $(-\infty, \infty)$ to $\mathcal{B}^{1}\left(\boldsymbol{R}^{n}\right)$,
(b) $t \rightarrow B(\cdot, t)$ is continuous on $(-\infty, \infty)$ to $\mathscr{B}^{0}\left(\boldsymbol{R}^{n}\right)$ and

$$
\frac{\partial B(x, t)}{\partial x_{j}} \in \mathscr{B}^{0}\left(\boldsymbol{R}^{n} \times(-\infty, \infty)\right), \quad j=1,2, \cdots, n .
$$

Here $\mathscr{B}^{l}\left(\boldsymbol{R}^{m}\right)$ is the set of all $N \times N$-matrix valued functions A such that A and $D^{\alpha} A,|\alpha| \leqq l$ are continuous and bounded on \boldsymbol{R}^{m}.

We further consider two systems of linear partial differential equations given by

$$
\begin{equation*}
\frac{\partial u^{ \pm}(x, t)}{\partial t}=\sum_{j=1}^{n} A_{j}^{ \pm} \frac{\partial u^{ \pm}(x, t)}{\partial x_{j}}+B^{ \pm} u^{ \pm}(x, t) \tag{1.2}
\end{equation*}
$$

where $A_{j}^{ \pm}$are $N \times N$ constant Hermitian symmetric matrices and $B^{ \pm}$ are $N \times N$ constant matrices satisfying $B^{ \pm}+\left(B^{ \pm}\right)^{*}=0 . \quad\left(F^{*}\right.$ denotes the Hermitian conjugate matrix of F.)

We assume that (1.2) ${ }^{ \pm}$are close to (1.1) near $|t|=\infty$ in the following sense.
(II) There exists a function $\phi(t) \in L^{1}(-\infty, \infty)$ satisfying (1.3) $\quad\left|A_{j}(x, t)-A_{j}^{ \pm}\right|_{\mathcal{B}^{1}\left(\boldsymbol{R}^{n}\right)} \leqq \phi(t), \quad\left|B(x, t)-B^{ \pm}\right|_{\mathcal{B}^{1}\left(\boldsymbol{R}^{n}\right)} \leqq \phi(t) \quad$ for $t \lessgtr 0$. We define an operator $U(t ; s)$ by $U(t ; s) u_{0}=u(x, t)$ where $u(x, t)$ $\in \mathcal{E}_{t}^{1}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right) \cap \mathcal{E}_{t}^{0}\left(H^{1}\left(\boldsymbol{R}^{n}\right)\right)$ is a solution of (1.1) with Cauchy data $u_{0}(x)$ $\in H^{1}\left(\boldsymbol{R}^{n}\right)$ at time s. We define the operators $U_{0}^{ \pm}(t ; s)$ analogously. By the energy inequality, expressed in Lemma 1 and Lemma 2 below, the

[^0]operators $U(t ; s)$ and $U_{0}^{ \pm}(t ; s)$ are well defined and are extended as the bounded operators in $L^{2}\left(\boldsymbol{R}^{n}\right)$. Our Theorem 1 reads as follows:

Theorem 1. We assume (I) and (II). Then, there exist operators $W_{ \pm}, * W_{ \pm}$defined as follows:

$$
\begin{align*}
* W_{+} & =\lim _{t \rightarrow \infty} * W_{+}(t), & * W_{+}(t) & =U_{0}^{+}(0 ; t) U(t ; 0) \tag{1.4}\\
W_{-} & =\lim _{i \rightarrow-\infty} W_{-}(t), & W_{-}(t) & =U(0 ; t) U_{0}^{-}(t ; 0) \tag{1.5}\\
W_{+} & =\lim _{t \rightarrow \infty} W_{+}(t), & W_{+}(t) & =U(0 ; t) U_{0}^{+}(t ; 0) \tag{1.6}\\
* W_{-} & =\lim _{t \rightarrow-\infty} * W_{-}(t), & * W_{-}(t) & =U_{0}^{-}(0 ; t) U(t ; 0), \tag{1.7}
\end{align*}
$$

limits being taken in $L^{2}\left(\boldsymbol{R}^{n}\right)$.
In order to state our Theorem 2, we introduce another notion of solutions.

Definition. A function $\widetilde{u}^{ \pm}(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right)$ is said to be a weak solution of (1.2) ${ }^{ \pm}$if it satisfies

$$
\begin{align*}
& \int_{R^{n}} \tilde{u}^{ \pm}(x, t) \overline{\varphi^{ \pm}(x, t)} d x-\int_{R^{n}} \tilde{u}^{ \pm}(x, s) \overline{\varphi^{ \pm}(x, s)} d x \\
& \quad=\int_{s}^{t} d \tau \int_{R^{n}} \tilde{u}^{ \pm}(x, \tau)\left[\frac{\partial \varphi^{ \pm}(x, \tau)}{\partial \tau}-\sum_{j=1}^{n} A_{j}^{ \pm} \frac{\partial \varphi^{ \pm}(x, \tau)}{\partial x_{j}}-B^{ \pm} \varphi^{ \pm}(x, \tau)\right] d x \tag{1.8}
\end{align*}
$$

for any $s, t \in(-\infty, \infty)$ and $\varphi^{ \pm}(x, t) \in \mathcal{E}_{t}^{1}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right) \cap \mathcal{E}_{t}^{0}\left(H^{1}\left(\boldsymbol{R}^{n}\right)\right)$.
Then, we have
Theorem 2. We assume (I) and (II). Let $u(x, t) \in \mathcal{E}_{t}^{1}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right)$ $\cap \mathcal{E}_{t}^{0}\left(H^{1}\left(\boldsymbol{R}^{n}\right)\right)$ be a solution of (1.1). If there exists a function $u^{-}(x, t)$ $\in \mathcal{E}_{t}^{0}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right)$ which is a weak solution of (1.2) ${ }^{-}$satisfying

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left\|u(x, t)-u^{-}(x, t)\right\|_{L^{2}\left(\boldsymbol{R}^{n}\right)}=0 \tag{1.9}
\end{equation*}
$$

then there exists a uniquely defined function $u^{+}(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right)$ which is a weak solution of $(1.2)^{+}$satisfying

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|u(x, t)-u^{+}(x, t)\right\|_{L^{2}\left(\boldsymbol{R}^{n}\right)}=0 \tag{1.10}
\end{equation*}
$$

§2. The sketch of the proofs. We prepare the following two lemmas.

Lemma 1. Let $u(x, t) \in \mathcal{E}_{t}^{1}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right) \cap \mathcal{E}_{t}^{0}\left(H^{1}\left(\boldsymbol{R}^{n}\right)\right)$ be a solution of (1.1). Then we have,

$$
\begin{align*}
& \text { (2.1) }\|u(x, t)\| \leqq \exp \left(\int_{0}^{t} \phi(s) d s\right)\|u(x, 0)\| \tag{2.1}\\
& \text { (2.2) }\|u(x, t)\|+\sum_{k=1}^{n}\left\|u_{k}(x, t)\right\| \tag{2.2}\\
& \leqq \exp \left((2+n) \int_{0}^{t} \phi(s) d s\right) \cdot\left[\|u(x, 0)\|+\sum_{k=1}^{n}\left\|u_{k}(x, 0)\right\|\right] \tag{2.4}\\
& \text { where } u_{k}(x, t)=\frac{\partial u(x, t)}{\partial x_{k}},\|v\|^{2}=(v, v)=\int_{R^{n}} v(x) \overline{v(x)} d x \\
& \text { Proof. We have }
\end{align*}
$$

$$
\begin{align*}
\left|\frac{1}{2} \frac{d}{d t}\|u(\cdot, t)\|^{2}\right|= & \mid \operatorname{Re}\left(\sum_{j=1}^{n}\left(A_{j}(x, t)-A_{j}^{ \pm}\right) u_{j}, u\right) \\
& +\operatorname{Re}\left(\left(B(x, t)-B^{ \pm}\right) u, u\right)+\operatorname{Re}\left(\sum_{j=1}^{n} A_{j}^{ \pm} u_{j}+B^{ \pm} u, u\right) \mid \tag{2.3}\\
\leqq & \phi(t) \cdot\|u(\cdot, t)\|^{2} .
\end{align*}
$$

Thus, since the inequality $\gamma^{\prime}(t) \leqq \phi(t) \gamma(t)$ for non-negative integrable functions implies $\gamma(t) \leqq \gamma(0) \exp \left(\int_{0}^{t} \phi(s) d s\right)$, we obtain (2.1).

Assume further that $u(x, t) \in \mathcal{E}_{t}^{1}\left(H^{1}\left(\boldsymbol{R}^{n}\right)\right) \cap \mathcal{E}_{t}^{0}\left(H^{2}\left(\boldsymbol{R}^{n}\right)\right)$. Then, we have

$$
\begin{align*}
\left|\frac{1}{2} \frac{d}{d t}\left\|u_{k}(\cdot, t)\right\|^{2}\right|= & \mid \operatorname{Re}\left(\sum_{i=1}^{n}\left(A_{j}(x, t)-A_{j}^{ \pm}\right) u_{k j}, u_{k}\right) \\
& +\operatorname{Re}\left(\left(B(x, t)-B^{ \pm}\right) u_{k}, u_{k}\right) \\
& +\operatorname{Re}\left(\sum_{j=1}^{n} A_{j}^{ \pm} u_{k j}+B^{ \pm} u_{k}, u_{k}\right) \tag{2.4}\\
& +\operatorname{Re}\left(\sum_{j=1}^{n} A_{j}^{(k)}(x, t) u_{j}+B^{(k)}(x, t) u, u_{k}\right) \mid
\end{align*}
$$

Combining this with (2.3) and (1.3), we have

$$
\begin{align*}
& \frac{d}{d t}\left[\|u(\cdot, t)\|+\sum_{k=1}^{n}\left\|u_{k}(\cdot, t)\right\|\right] \tag{2.5}\\
& \quad \leqq(n+2) \cdot \phi(t)\left[\|u(\cdot, t)\|+\sum_{k=1}^{n}\left\|u_{k}(\cdot, t)\right\|\right]
\end{align*}
$$

As in the case of (2.1), we obtain (2.2) from (2.5). Using the Friedrich mollifier with respect to x, we can remove the additional regularity for $u(x, t)$.
Q.E.D.

Lemma 2 ([1], [3]). Let $u^{ \pm}(x, t)$ be a weak solution of (1.2) ${ }^{ \pm}$. Then we have

$$
\begin{equation*}
\left\|u^{ \pm}(x, t)\right\|=\left\|u^{ \pm}(x, s)\right\| \quad \text { for any } s, t \tag{2.6}
\end{equation*}
$$

Moreover, if $u^{ \pm}(x, t) \in \mathcal{E}_{t}^{1}\left(L^{2}\left(\boldsymbol{R}^{n}\right)\right) \cap \mathcal{E}_{t}^{0}\left(H^{1}\left(\boldsymbol{R}^{n}\right)\right)$, we have
(2.7) $\left\|u^{ \pm}(x, t)\right\|_{1}=\left\|u^{ \pm}(x, s)\right\|_{1} \quad$ for any s, t, where $\|\cdot\|_{1}=\|\cdot\|_{H^{1}\left(\boldsymbol{R}^{n}\right)}$.

Proof. Let $\left\{u_{m}^{ \pm}(x)\right\}$ be a sequence in $H^{1}\left(\boldsymbol{R}^{n}\right)$ converging to $u^{ \pm}(x, s)$ in $L^{2}\left(\boldsymbol{R}^{n}\right)$-norm. Define $\varphi_{m}^{ \pm}(x, t)=U_{0}^{ \pm}(t, s) u_{m}^{ \pm}(x)$. Putting $\varphi_{m}^{ \pm}(x, t)$ in $(1.8)^{ \pm}$ in place of $\varphi^{ \pm}(x, t)$, we obtain

$$
\int_{R^{n}} u^{ \pm}(x, t) \overline{\varphi_{m}^{ \pm}(x, t)} d x=\int_{R^{n}} u^{ \pm}(x, s) \overline{u_{m}^{ \pm}(x)} d x .
$$

Tending m to ∞, and using the Schwarz inequality, we have

$$
\left\|u^{ \pm}(x, s)\right\| \leqq\left\|u^{ \pm}(x, t)\right\| .
$$

As t and s are taken arbitrary, we have (2.6). Similarly as in the proof of (2.2), we obtain (2.7) immediately.
Q.E.D.

Proof of Theorem 1. For $u_{0}(x) \in H^{1}\left(\boldsymbol{R}^{n}\right)$, we can differentiate $* W_{+}(t) u_{0}$ given by (1.4) and we obtain

$$
\begin{aligned}
& * W_{+}(t) u_{0}-u_{0} \\
& \quad=\int_{0}^{t} U_{0}^{+}(0 ; s)\left[\sum_{j=1}^{n}\left(A_{j}(x, s)-A_{j}^{+}\right) \frac{\partial}{\partial x_{j}}+\left(B(x, s)-B^{+}\right)\right] U(s ; 0) u_{0} d s
\end{aligned}
$$

Since $u_{0} \in H^{1}\left(\boldsymbol{R}^{n}\right)$, we have (i) $U(t ; 0) u_{0} \in H^{1}\left(\boldsymbol{R}^{n}\right)$, (ii) $[\cdots] U(t ; 0) u_{0}$ is continuous in t and (iii) $\left\|[\cdots] U(t ; 0) u_{0}\right\|$ is integrable on $(0, \infty)$ by (1.3), (2.2) and (2.6). Therefore applying Theorem X.3.7 of T. Kato [4], we can prove that there exists $* W_{+}=* W_{+}(\infty)$.

Analogously, we prove the existence of the operators W_{+}, W_{-}and * $W_{\text {- }}$.

Poof of Theorem 2. By Lemma 2, we obtain the following representation for the weak solution $u^{ \pm}(x, t)$ of (1.2) ${ }^{ \pm}$

$$
\begin{equation*}
u^{ \pm}(x, t)=U_{0}^{ \pm}(t ; s) u^{ \pm}(x, s) . \tag{2.8}
\end{equation*}
$$

We also have

$$
\begin{equation*}
u(x, t)=U(t ; s) u(x, s) \tag{2.9}
\end{equation*}
$$

Therefore, by (1.7), (1.9) and (2.1), we obtain $u(x, 0)=W_{_} u^{-}(x, 0)$, because we have

$$
\begin{aligned}
\| U(t ; 0) & u(x, 0)-U_{0}^{-}(t ; 0) u^{-}(x, 0) \| \\
& =\left\|U(t ; 0)\left[u(x, 0)-U(0 ; t) U_{0}^{-}(t ; 0) u^{-}(x, 0)\right]\right\| \\
& \geqq \exp \left(-\int_{0}^{t} \phi(s) d s\right)\left\|u(x, 0)-U(0 ; t) U_{0}^{-}(t ; 0) u^{-}(x, 0)\right\| .
\end{aligned}
$$

Thus, by defining $u^{+}(x, t)=U_{0}^{+}(t ; 0)\left(* W_{+}\right) W_{-} u^{-}(x, 0)$, we prove immediately that $u^{+}(x, t)$ satisfies (1.2) ${ }^{+}$and (1.1).
Q.E.D.

References

[1] A. Inoue: Sur l'opérateur d'onde et de scattering pour \square dans un domaine non-cylindrique (à paraître).
[2] -: L'opérateur d'onde et de diffusion pour un système évolutif ($d / d t$) $+i A(t)$. C. R. Acad. Sci. Paris, 275, 1323-1325 (1972).
[3] -: Wave and scattering operators for an evolutive system ($d / d t$) $+i A(t)$ (to appear).
[4] T. Kato: Perturbation Theory for Linear Operators. Springer, BerlinHeidelberg - New York (1966).
[5] - : Linear evolution equations of "hyperbolic" type. J. Fac. Sci. Univ. Tokyo, Sec. IA, 17, 242-258 (1970).
[6] S. Mizohata: The Theory of Partial Differential Equations. Iwanami, Tokyo (1965) (in Japanese).

[^0]: 1) $u(x, t) \in \mathcal{E}_{t}^{l}\left(H^{k}\left(\boldsymbol{R}^{n}\right)\right)$ means that $u(\cdot, t)$ is a $H^{k}\left(\boldsymbol{R}^{n}\right)$ valued function of t, l-times continuously differentiable with respect to t in $H^{k}\left(\boldsymbol{R}^{n}\right)$-norm.
