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1. Introduction. Let X be a real Banach space with the norm
II. An operator B in X is said to be accretive if

(1.1) 11(I+2B)x--(I+2B)yl[_ltx--yll for x, yeD(B) and 2>0.
It is known that B is accretive if and only if for any x, y e D(B)

there exists f e F(x--y) such that (Bx--By, f)_O, where F is the duality
map of X, i.e., F(x)--{x* e X* (x, x*) x 2-- x* 2} for x e X. IfB is
accretive and R(I+2B)--X for all 20, we say that B is m-accretive.

Let A be a linear m-accretive operator in X with dense domain and
let B be a nonlinear accretive operator in X. Recently G. Webb [4]
proved that, under some additional assumptions ou A and B, for all
x e X and t>_0
(1.2) U(t)x=lim. ((I+(t/n)B)-(I+(t/n)A)-9x
exists and {U(t) t_>0} is a contraction semi-group on X. By a contrac-
tion semi-group on C, where C is a subset of X, we mean a amily
{U(t) t >_0} o operators U(t)" C--.C satisfying the ollowing conditions"
(1) U(t) U(s) U(t + s) for t, s >_ 0 (2) limt0+ U(t)x- U(O)x- x or x e C
(3) U(t), t>_O, are contractions on C, i.e., I1U(t)x-U(t)yll<_l]x-yll or
x, yeC, t_0.

In this paper, we shall study how the semi-group {U(t) t_>0} given
by (1.2) is related to the strong solution of the ollowing Cauchy problem
(1.3) du/dt +(A +B)u--O, u(O)--x ( e X).
Now we give the precise definition of strong solution of the Cauchy
problem (1.3).

Definition 1.1. A unction u" [0, c)-X is a strong solution of
(1.3) if u is Lipschitz continuous on [0, c), u(O)-x, u is strongly dif-
ferentiable almost everywhere and
(1.4) du(t) +(A +B)u(t)=O or a.a. t e [0, c).

It ollows easily rom the accretiveness o A /B that the Cauchy
problem has at most one strong solution.

Our results are stated as follows; and the proofs are given in 2.
Theorem 1.1. Suppose that A is a linear m-accretive operator in

X with dense domain, B is a nonlinear accretive operator in X and D
is a subset of D(A) D(B) satisfying (I+ 2B)-l(I -- 2A)-(D) D for 2 O.
Let u" [0, c)--.X be a strong solution of the Cauchy problem (1.3) with
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the initial value u(O)= x e D, and assume that for any T 0 there exists
a constant MrO such that
(1.5) IIABu(t)II<_Mr for a.a. t e [0, T].

Then we have
(1.6) u(t)=lim ((I+(t/n)B)-(I/(t/n)A)-)x for t>_O.

Remark. By applying this theorem with Ax=O for x e X and
D--D(B), we can obtain the ollowing result due to Brezis and Pazy
[1]" Let B be a nonlinear accretive operator in X such that R(I +]B)
D(B) for 0. If u" [0, c)X is a strong solution of du/dt/Bu--O,
u(O) x e D(B), then

u(t)--lim (I/(t/n)B)-x for t_O.
Theorem 1.2. Suppose that A is a linear m-accretive operator in

X with dense domain, B is a nonlinear closed accretive operator in X,
B0=0, and D is a subset of D(A) D(B), D O, such that
(1.7) (I+2B)-(I/2A)-(D)cD for 20;
(1.8) there is a normed space YD with the norm Io such that
(I/2A)- is Ilo-COnstraction on D and (I+ 2B)- is Io-COnstraction
on D Y for 2>0;
(1.9) there is an increasing function L" [0, c)-(0, c) such that for
all x eDD(AB), IIABxlI_L(Ix Io)’1Ax

Then, for each x e D and t>_O
(1.10) U(t)x-lim ((I+ (t /n)B)-i(I- (/n)A)-)xexists and {U(t) t_0} is a contraction semi-group on D.

In addition to the assumptions above, suppose that the Banach
space D(A) with the graph norm [1 is continuously embedded into Y.

If x e D and there exists the strong derivative (d/dt)U(t)x at some
point toO such that U(to)X e D(A), then U(to)X e D(B) and (A + B)U(to)X

(d/dt) U(t)x It=to.
Finally we have the ollowing existence theorem or the solution

of the Cauchy problem (1.3) in reflexive Banach space.
Theorem 1.:. Let X be a reflexive Banach space and suppose the

assumptions in Theorem 1.2 are satisfied. Then for each x e D, u(t)
=U(t)x given by (1.10) is the unique strong solution of the Cauchy
problem (1.3),

2. Proofs of Theorems. We start rom the
Proof of Theorem 1.1. Let Ja-- (I /,B)-I(I+ 2A)- for 2 0, then

J is single-valued contraction and Ja(D)cD. Let {} be a positive
sequence such that n-0 as n-c and define step functions u(t) cn
[0, c) by
(2.1) Un(t)--Jt/"]x for t>_0.
If we set
(2.2)
for ]e_<t_<(]+l), ]=0, 1, 2, ., then v(t) is differentiable on
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(j,, (j + 1),), j=O, 1, , ..., and we have
(d/dt)vn(t)=-(.+lx-Jx) or ]t(j+l)n

Therefore

(2.3) Ax + Bx or a.a. t2 0,
where we used the following inequality" for 2>0, x e D

Using this inequality we also have
(2.4) ]v,(t)--u,(t) n(linxil+ligxll) or
By the definition, we have

(2 5) Un(t)--{.Un(t--en)- for t,,
for 0gtge.

We extend (the strong solution) u(t) as x for t< 0 and put
(2.6) g,(t)=s;(u(t)-u(t--e,))--(d/dt)u(t) for a.a. t0.
Then we have

;(u(t)--u(t--n)) + (A + B)u(t)--g,(t)
or
(2.7) u(t)--J,.(u(t--n)+,g,(t)+eABu(t)) or a.a. t0.

Let T>0 be arbitrarily fixed. Then it follows from (2.5) and (2.6)
that or a.a. t e [n, T],

u(t-) u,(t- n)]l + g,(t)il +iM.
Integrating this inequality over [, ] with ngT, we have

I:n U(S) U(S ds gI:. Un(S-- z,) u(s-- e,) ds

TMr
Sn

and hence

[]u,(s)--u(s)]dsg [x-u(s)[ids+e [[gn(S)i[ds+eTMT.

Adding these inequalities for --, 2,..., [T/n]S, we obtain

(2.S)
gT eX x-u(s)]lds+ I[g(s) llds+TMr

Since g(t)O at a.a. t0 asn and ]]g(t)]]g2M for a.a. t0, where

M is a Lipschitz constant for u(t), we have .[: g(t)[[ dtO as n.

Therefore (2.8) implies limn.[ [Un(t)--u(t)I dt=O. Combining this

with the inequality (2.4), we have lim II(t)--(t)dt=O. Since

t(d/dt)v(t)] + ](d/dt)u(t)l IAxll + IlSxll + M,
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we have

1--(d/dt) IIv(t)--u(t)ll= IIVn(t)--u(t)]] .(d/dt)
2

<_(l[Axll+[IBxll+i).llv(t)--u(t)ll or a.a. t>_0
and hence

tlv(t) u(t) <_2(llAxll + IIBxll + M)I" IlVn(8) U(8) ds

for t e [0, T]. Consequently u(t)-lim v(t)=lim u(t), uniformly
on [0, T]. If we put n--t/n in particular, we obtain (1.6). Q.E.D.

For the proof of Theorem 1.2, we prepare some lemmas. First we
state the following lemma without proof. (See Webb [4] for the proof.)

Lemma 2.1. Suppose that A is a linear m-aceretive operator in X
with dense domain, B is a nonlinear operator in X, B0--0, and D is a
subset of D(A) ( D(B), D O, such that (1.7), (1.8) and (1.9) in Theorem
1.2 are satisfied.

If we put J--(I+B)-I(I+A)- for 0, then for each x e D,0
L(llXllo)- and n= 1, 2, ..., we have that Jx e D D(AB),
(2.9) IIAJxl[

_
(1-

and
(2.10) [IABJx[I _L(i[xllo).

Moreover, for x e D, the integer n_m_l and _0,
I[Jx-J’x[I <_ [((n/-m) +n(-[))/+ (m(-l)(2.11) + (m--n))/](llAxll /

And then for each x e D and
(2.12) U(t)x--lim ((I+ (t/n)B)-(I+ (t/n)A)-)x
exists and {U(t) t>_0} is a contraction semi-group on D.

In the following let U(t) be given by (2.12). Next we present the
following useful lemma.

Lemma 2.2. Let the hypothesis of Lemma 2.1 be satisfied. Then
we have for x e D and Xo e D

(2.13) sup:.e(_x0)lim supt.0/
U(t)x-- x, ,) <<(A+B)xo, Xo-- x},

t
where <x, y}--sup {(x, ]*) y* e F(y)} for x, y e X.

Proof. It follows from Lemma 2.1 that
U(t)x- lim,0+ ((I + zB)-(I + eA)-)[t/’x

for t>_0 and x e D. At first, let x e D and put
y,--,-(J-lx--Jx) :for 0 and k=1,2,....

Then Jx e D D(AB) and
(2.14) y,=(A +B)Jx + 2ABJx.
Since A +B is accretive, there is a * e F(xo--Jx) such that

(y,-(A +B)xo--ABJx, *) <_0.
Hence

I[Xo-Jx[I- [[xo--J-xt[
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<_2(llXo-Jxll- IlXo-J-xll_
22(y,, ]*)

_
22((A + B)xo, *) + 22(ABJx, y*)_

22((A + B)xo, Xo--Jx}+2 ]]ABJxl llXo-Jx]]

< ((A +B)xo, Xo--J/x}ds+2ABJx]]" (llx011 + IIxll).
Let t2 and add the above inequalities or k=1,2, ...,[t/]. Then
we have

+  )x0,

+2 (t/ ]]ABJx) (llx011 + Ilxll).
Since (, }" XX (-, ) is upper semi-continuous (see [2]) and

t/ABJx =o(2) as 0+ by (2 10), by tking the limit superior
as 0+ in this inequality, we obtain

Xo--U(s)x} d t 0.
Noting ]U(t)X-Xo- X-Xo2(U(t)x-x, *) or any

e F(x-- Xo), (2.15) yields

for t0. It is easy to see that (2.15) and (2.16) remain true for x e D.
Dividing (2.16) by t0 and taking the limit superior as t0+, we
have the desired inequality (2.13). Q.E.D.

Proof of Theorem 1.2. The first part of theorem has been already
shown. We shall prove the second part. If we set y (all dr) U(t)x
we can write

U(to--2)x-U(to)x--2y+o(2) as 20+.
Since 2BJU(to--2)x--(I+2A)-U(to--2)x--JU(to--2)x and D(A) is a linear
space, xJU(to-2)x e D(AB)D(A) for 20. Therefore we have
(2.17) x+ 2(A + B)x+2ABx U(to)X--2y + o(2).
We want to show that ABx is bounded as 20+. We first note that

lIAU(to--)xil K IlAU(to)x + IiAU(to)x--AU(to--)xi
lAU(to)Xll +2- U(to)x- U(to-2)xll =O(1)

as 20+, where A=A(I+2A)- for 20. Since the Banach space
D(A) with the graph norm is contineously embedded into Y, further-
more we have

ilxioKii(I+ A)-U(to--)XloKC ](I+2n)-U(to--)x

as 20+, where C is a positive constant. By (1.9), we have
]]nx]]G n (I + 2A)-U(to--2)x]] + ]ABJU(to-)xII

IAU(to-)xlI + L(II xI o)"
and then we have for sufficiently small 20

IIAx (--L(II xII0)) - IIAU(to--)xii.
Therefore we obtain
I]nBx] L(] x]o) IInxlL( IxIIo). (1-2L(lI xl 0))- Inu(to-2)xI]-O(1)

as 20+. Accordingly we have by (2.17)
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(2.18) x+,(A+B)x=U(to)x--Ry+o(R) as 2-0+.
Hence the standard argument implies that - IIx--U(to)XllO and
(A +B)x+yll--,O as 2-0+. (See the proof of Theorem II of [2].)
We can rewrite (2.17) in the ashion"

x+ RBx--(I+ RA)-(U(to)X Ry + o(R))
U(to)X-RA(I+ RA)-1U(to)X-(I / RA)-Iy + o(R)

or
(I + RA)-A U(to)X +Bx+ (I + RA)-y R-(U(to)X x) + o(1)

as --*0+. Therefore the closedness of B implies that U(to)X e D(B)
and (A + B)U(to)X= y. Q.E.D.

Proof of Theorem 1.3. It is easily shown that u(t)=U(t)x is
Lipschitz continuous on [0, c) by Lemma 2.1. Therefore it ollows
from the reflexivity of X that u(t) is strongly differentiable almost
everywhere on (0, c).
We now show that U(t)x e D(A) or all t 0. In act, or each t) 0,
lim Jt/ x-U(t)x and AJ/x is bounded as n--.c by (2.9). So the
weak closedness o A implies that U(t)x e D(A). (The weak closedness
of A means that x e D(A), xx (weak convergence) and Axn--y im-
ply x e D(A) and y=Ax.) Consequently, by Theorem 1.2, u(t) is a
strong solution of the Cauchy problem (1.3). Q.E.D.

Remark. If we suppose in addition in Theorem 1.3 that X has a
uniformly convex dual and B is m-accretive, then the solution u(t) o
Theorem 1.3 satisfies the condition (1.5) of Theorem 1.1. In fact, let
T0 be arbitrarily fixed. Then IIAJ/xll=O(1) as n-c uniformly on
[0, T], and so is IIABJ/II by (2.10). Therefore by (2.14)

<-IIn/x + (t / n)ll AB]/x + Ax + Bx 0(1)
as n-c, uniformly on [0, T]. Consequently, the weak closedness of
A and the demi-closedness of B imply that U(t)xeD(AB) and
ABU(t)x is bounded on [0, T]. Q.E.D.
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