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§1. Introduction. Let X be a real Banach space with the norm
I . An operator B in X is said to be accretive if
@11 [[d+2B)x—UI+iB)y||>|x—y| for z,yeDB) and 1>0.

It is known that B is accretive if and only if for any x,y ¢ D(B)
there exists f € F(x—y) such that (Bx— By, f)>0, where F' is the duality
map of X, i.e., F(x)={x* e X*; (x, 2*)=||x|!=|a* |} for re X. If Bis
accretive and R(I+2AB)=X for all 2>0, we say that B is m-accretive.

Let A be a linear m-accretive operator in X with dense domain and
let B be a nonlinear accretive operator in X. Recently G. Webb [4]
proved that, under some additional assumptions on A and B, for all
zeX and t>0
1.2) U@z=lim,_., (I+E/mB)" "I +({/n)A) ")z
exists and {U(?) ; >0} is a contraction semi-group on X. By a contrac-
tion semi-group on C, where C is a subset of X, we mean a family
{U(t) ; t>0} of operators U(t) : C—C satisfying the following conditions :
Q) UDUE)=U(t+s) for t,5>0; (2) lim,_, , U®)z=U0)x=x for xc C;
3) U@, t>=0, are contractions on C, i.e., |U{®)x—U@)y| <||z—v| for
z,yeC, t>0.

In this paper, we shall study how the semi-group {U(?) ; t>0} given
by (1.2) is related to the strong solution of the following Cauchy problem
(1.3) du/dt+(A+Bu=0, w0)=2z (e X).

Now we give the precise definition of strong solution of the Cauchy
problem (1.3).

Definition 1.1. A function u: [0, 0)—X is a strong solution of
(1.3) if 4 is Lipschitz continuous on [0, o), w(0) ==, « is strongly dif-
ferentiable almost everywhere and
1.4) du(t) /dt+(A +B)u(t)=0 for a.a. t ¢ [0, o).

It follows easily from the accretiveness of A -+B that the Cauchy
problem has at most one strong solution.

Our results are stated as follows; and the proofs are given in § 2.

Theorem 1.1. Suppose that A is a linear m-accretive operator in
X with dense domain, B is a nonlinear accretive operator in X and D
s a subset of D(A) N D(B) satisfying (I +iB)~'(I+24)"*(D)C D for 2>0.
Let u: [0, c0)—X be a strong solution of the Cauchy problem (1.8) with
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the initial value w(0)=x e D, and assume that for any T >0 there exists
a constant M,>0 such that
(1.5) |ABu(t) || <My for a.a. te [0, T1.

Then we have
1.6) wu@®=lim,.,([I+E/MB)I+{E/nA) Y for t>0.

Remark. By applying this theorem with Az=0 for x ¢ X and
D=D(B), we can obtain the following result due to Brezis and Pazy
[11: Let B be a nonlinear accretive operator in X such that R(I-+21B)
DD(B) for 1>0. Ifwu:[0,c0)—X isa strong solution of du/dt+Bu=0,
w(0)=x ¢ D(B), then

uw(®)=lim,_., I+ (t/n)B)~-"x for t>0.

Theorem 1.2. Suppose that A is a linear m-accretive operator in
X with dense domain, B is a nonlinear closed accretive operator in X,
B0=0, and D is a subset of D(A)ND(B), D s 0, such that
(1.7) (I+2B)"'(I+24)"(D)c D for 2>0;

(1.8) there is a normed space Y OD with the norm | |, such that
(I+24)1is || |-constraction on D and (I+AB)! is || |,~constraction
on DNY for 2>0;

(1.9) there is an increasing function L: [0, c0)—(0, co) such that for
all xe DND(AB), |ABz||<L(|z|)-||Az].

Then, for each x e D and t>0
(1.10) UMz=lim,_., (I +({/mB) "I +(t/n)A) )"z
exists and {U(t) ; t>0} is a contraction semi-group on D.

In addition to the assumptions above, suppose that the Banach
space D(A) with the graph norm | |, is continuously embedded into Y.

If x € D and there exists the strong derivative (d/dt)U(t)x at some
point t,>0 such that U(t)x € D(A), then U(ty)x e D(B) and (A+ B)U(t)x
=—(d/dU®x|,_,-

Finally we have the following existence theorem for the solution
of the Cauchy problem (1.3) in reflexive Banach space.

Theorem 1.3. Let X be a reflexive Banach space and suppose the
assumptions in Theorem 1.2 are satisfied. Then for each xe D, u(t)
=U)x given by (1.10) is the unique strong solution of the Cauchy
problem (1.3).

§2. Proofs of Theorems. We start from the

Proof of Theorem 1.1. Let J,={+1B)*(I+14)! for 2>0, then
J, is single-valued contraction and J(D)CD. Let {¢,} be a positive

sequence such that ¢,—0 as n—oo and define step functions u,(t) on
[0, o) by

2.1) Uy (B) =T/ enlye for t>0.
If we set
2.2) V(0 =u,(Je,) + €5 (t — Je )T —J! %)

for je,<t<(j+De,, §=0,1,2,..., then v,(t) is differentiable on
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(jen’ (j+1)5n), j=07 1,2, ..., and we have
@/dt)v, ()= x—J! x) for je, <t<(j+ De,.
Therefore
2.3) (@/dOyv.D|=e! || T e —T] x| < ||, 2— ||
’ <||Az|+|| Bz for a.a. t>0,
where we used the following inequality : for >0, x ¢ D

lJx—2| <+ 24) e — (I + AB)x || < A(|Az|| +|| Bx|).
Using this inequality we also have

(2.4) |0.(8) —u, (8) | <e, (|| A ||+ Bx|) for t>0.
By the definition, we have

(I U —ey) for t>e¢,,
2.5) Un(®)= {x for 0<t<e,.

We extend (the strong solution) u(t) as x for ¢<0 and put

(2.6) 9.0 =, (u(t) —u(t —e,)) —(d /dt)u(t) for a.a. t>0.
Then we have

&' (u(t) —u(t —e,)) + (A + B)u(t) = 9.,.(t)
or

2.7) u®)=J,, (ut—e,) +e,9,(&) + 2 ABu(t)) for a.a. t>0.

Let T>0 be arbitrarily fixed. Then it follows from (2.5) and (2.6)
that for a.a. t e [e,, T,

[[%,(0) —u(®) | <||u(t —e,) — Un(E—e,) + 6,90 (t) + L ABu(t) ||

<Nut—en) —Un(E—en) | +en | 92D || + LM 1.
Integrating this inequality over [¢,, 6] with ¢, <0<T, we have

[ 1@ —uts)ids< [ funs—en—uts—eds
teof 19, s +ETM,
and hence
I:_m |4 () —u(s)| ds _<_L |z —u(s)||ds +enLT | gn(8)||ds+ETM,.
Adding these inequalities for 0=e,, 2¢,, - - -, [T /e ]en, We obtain
[ )~ i ds

0

2.8 . -
ST<e; L Hac—u(s)||ds+jo l[gn(s)nds—i-s,,TMT) .
Since g,(t)—0 at a.a. t>0 as n—oo and || g,(t) | <2M for a.a. t>0, where
M is a Lipschitz constant for w(t), we have r | 9.(®) || dt—0 as n—oo.
0

Therefore (2.8) implies limn_wrnun(t)—u(t)Hdt=0. Combining this
0

with the inequality (2.4), we have lim,__ j " lloa) —u(®)|dt=0. Since
0

(d/d)||v.(®) —u@®)|| < [I(d/dt)(va(8) —u(®)) |
<|(@d/dv. @B +[1(d/dDu@® || < || Azl + || Bx| + M,
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we have
%(d/ dt) [|[v,() —u®)|]*=||v,(&) —u@®)|| - (d/dt) ||v,.(&) —u(®)||

<([|Az| +||Bz| + M) [|[v,(t) —u(®)|| for a.a. >0
and hence

oa®—u) <20 Az + Bl + 3D 0u(s) —u(s)] ds

for ¢t ¢ [0,T]. Consequently u(t)=lim,_. v,(t)=lim,_. u,(t), uniformly
on [0, T]. If we put ¢,=t/n in particular, we obtain (1.6). Q.E.D.

For the proof of Theorem 1.2, we prepare some lemmas. First we
state the following lemma without proof. (See Webb [4] for the proof.)

Lemma 2.1. Suppose that A is a linear m-aceretive operator in X
with dense domain, B is a nonlinear operator in X, B0=0, and D is a
subset of D(A) N D(B), D >0, such that (1.7), (1.8) and (1.9) in Theorem
1.2 are satisfied.

If we put J,={I +2B)*(I +2A)7! for 2>0, then for each x ¢ D, 0<2
<L(|z||p! and n=1,2, - - -, we have that J?x ¢ DN D(AB),

(2.9 |AT 72| <(A—2L(||z||) " || Az]|
and
(2.10) lABJ x| < L(||2|ly) - (1 —2AL(||2||) " || Az]|.

Moreover, for x e D, the integer n>m>1 and 2>p>0,
@11y WEe—T7al <UOu—md + npa— )"+ (mAG—p)
+ (ma—nw) (| Az + 1| B]) +npd— ) - MK, <rzn | ABT S
And then for each x e D and t>0
2.12) U)yx=lim,_., ({+E/m)B)* +(t/n)A) ) x
exists and {U(t) ; >0} is a contraction semi-group on D.
In the following let U(¢) be given by (2.12). Next we present the
following useful lemma.

Lemma 2.2. Let the hypothesis of Lemma 2.1 be satisfied. Then
we have for xe D and x,€ D

(2.13) SUDcrcrio.ry 1M SUD, -0, (ﬂ%i f;*) <A+ B)z,, #,—,,

where {x,y>,=sup {(z, p*); p* ¢ FY)} for x,y e X.

Proof. It follows from Lemma 2.1 that

U®)x=lim,_,, (I +eB)™'(I+eA)"H¥x
for t>0 and x € D. At first, let x € D and put
Yir=A"'J¥c—J%) for 2>0 and k=1,2,..-.
Then J*x e DN D(AB) and
(2.14) Yr=(A+B)Jix+ 1ABJ¥x.
Since A + B is accretive, there is a »* € F'(x,—J%x) such that
(yz,k_(A + B)x,—2ABJ%x, 7]*) <0.

Hence

o —J5]|* — || — T 1| |*
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<2(||@o— 5| — ||y — T || - |2 — J52 )
<L22(Y3, 1y 1) <22(A + B)y, p*) + 22(ABJ S, 7™*)
S2X(A + B)y, #y—J52),+28° | ABJf|| - ||ty — T 5|

(k+1)2

SZJ o A+Bmy, 2~y ds + 22| ABTa) - (| + [121)-

Let t>2 and add the above inequalities for k=1,2,...,[t/2]. Then
we have -
([¢/20+1)2

|| @g— Jee)|* — |Ixo—wl\2SzL (A + By, 2, — I3y ds

+22 A ABT ) - (|2l + 2.
Since ( , Dy: X X X— (—o0, c0) is upper semi-continuous (see [2]) and
25| ABJ x| =0(2) as 2—0+ by (2.10), by taking the limit superior
as 2—0+ in this inequality, we obtain

(2.15) ||U(t)x—x0u2—||x0—xn%gzﬁ<(A+B)x0,xo—U(s)x>3ds for ¢>0.

Noting |U@x—2|*— |z —/*>2(U(®)x—2,L*) for any C*
e F(x—x,), (2.15) yields

(2.16) (Ut —2, 09 < [ (A + By 20— Us)ds

for t>0. It is easy to see that (2.15) and (2.16) remain true for x € D.
Dividing (2.16) by t>0 and taking the limit superior as t—0-+, we
have the desired inequality (2.13). Q.E.D.

Proof of Theorem 1.2. The first part of theorem has been already

shown. We shall prove the second part. If weset y=(d/dt)UD)x|;_;,,
we can write

Ut,—Dx=U(t)x— iy +o(1) as 2—0+.
Since ABJ,U(t,—Dx=I+1A)U(t,—Ax—J,U(t,—)x and D(A) is a linear
space, x,=J,U(t,—D)x e D(AB)ND(A) for 2>0. Therefore we have
@2.17 2, + A+ B)x,+ 2 ABx,=U(t))x— Ay -+ o(2).
We want to show that ABx, is bounded as 2z—04. We first note that
14, UG-z <|4,UC)z| + 1|4, Ut)x— A, U(t,— ||
<[AU)z|| 42271 U(t)x — U(t,— Dzl = O0(1)
as 1—0+4, where 4,=A+24)7' for 2>0. Since the Banach space
D(A) with the graph norm is contineously embedded into Y, further-
more we have
2l <+ 24) U, — D |l < C [+ 24) Uty — D ||«
LC(UEG—Dz |+ || A,UE—Dz[h=0@1)
as 2—0+, where C is a positive constant. By (1.9), we have
Az, || <I|AUT+24)" U, — Dz ||+ | ABJ,U(t,— Dz ||
<A UG~ Dz ||+ L2 [l0) - | A, ||
and then we have for sufficiently small 1>0
Az || < —2AL(|z,[l) " | A, Ut — D]
Therefore we obtain
| AB, | <L(| z,]lo) | Az, | <L(| 2, ]lp) - X — 2L 2;[|) " || A, U(t,— D ||= O(1)
as 2—0+. Accordingly we have by (2.17)
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(2.18) Z,+2A+B)e,=U(t)x— 2y + o(2) as 1—0+.
Hence the standard argument implies that 17'|z,—U(t)x||—0 and
A+ B)x,+y|—0 as 2—0+. (See the proof of Theorem II of [2].)
We can rewrite (2.17) in the fashion:
2,4+ ABx,=I 4+ 2A)""(U(t)x— 2y + 0(2))
=U(t)x—2AT +24)'Ut)r— I +24) 'y +0(2)
or
(I+24)'AU{t)x+Bx,+ I+ 24)'y=2""(Ut)x—x,) +0(1)

as 2—-0+. Therefore the closedness of B implies that U(t)x € D(B)
and (A+B)U{t)r=—y. Q.E.D.

Proof of Theorem 1.3. It is easily shown that uw(®)=U@)x is
Lipschitz continuous on [0, ©) by Lemma 2.1. Therefore it follows
from the reflexivity of X that u(t) is strongly differentiable almost
everywhere on (0, oo).
We now show that U(t)x € D(A) for all t>0. In fact, for each >0,
lim,_. J7, x=U()x and AJ},x is bounded as n—oo by (2.9). So the
weak closedness of A implies that U(t)x € D(A). (The weak closedness
of A means that z, ¢ D(A4), z,—x (weak convergence) and Ax,—y im-
ply e D(A) and y=Ax.) Consequently, by Theorem 1.2, u(t) is a
strong solution of the Cauchy problem (1.3). Q.E.D.

Remark. If we suppose in addition in Theorem 1.3 that X has a
uniformly convex dual and B is m-accretive, then the solution u(t) of
Theorem 1.3 satisfies the condition (1.5) of Theorem 1.1. In fact, let
T >0 be arbitrarily fixed. Then ||AJ?,2z|=0(1) as n— oo uniformly on
[0, T1, and so is ||ABJY,|| by (2.10). Therefore by (2.14)

BT | <|| AT |+ (0| ABT e |+ Yem.al
<IIAT3 |+ ¢/m)]| ABT 3, + | Awl| +| Bx|=0()

as n—oo, uniformly on [0, T]. Consequently, the weak closedness of
A and the demi-closedness of B imply that U(f)x ¢ D(AB) and
IABU@)x|| is bounded on [0, T]. Q.E.D.
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