156. On the Elementary Partitions of the State Set in a Multiple-Input Semiautomaton

By Masami Ito
Kyoto Sangyo University, Kyoto
(Comm. by Kinjirô Kunugı, m. J. A., Nov. 12, 1973)

1. Introduction. Determination of all homomorphic images of a given semiautomaton is equivalent to constructing all admissible partitions of its state set.

For the case of a one-input semiautomaton, there exists an efficient method for the construction of all admissible partitions. This can be done easily by determining all elementary partitions [1], [2].

For the case of a multiple-input semiautomaton, it seems complicated at first sight. But, even in this case, if all elementary partitions can be constructed, we can use the same procedure as the one-input case and we can obtain all admissible partitions.

In this note, we shall give an algorithm for constructing all elementary partitions of the state set in a multiple-input semiautomaton by using known elementary partitions for the one-input case. We shall borrow many notations and terms from [1].
2. Preliminaries. Consider a semiautomaton $A=(S, \Sigma, M)$, where S is a set of states, $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right\}(n \geq 2)$ is a set of inputs, and M is a set of transition mappings.

Definition 1. Let π be a partition of S. $\tilde{\pi}$ is called the admissible closure of π in A if and only if $\tilde{\pi}=\Pi_{i \in \Lambda} \xi_{i}$, where $\left\{\xi_{i} ; i \in \Lambda\right\}$ is the set of all admissible partitions in A such that $\pi \leq \xi_{i}(i \in \Lambda)$.

In section 4, we shall give a method for constructing the admissible closure $\tilde{\pi}$ of π.

Definition 2. An admissible partition $\pi \neq 0$ of S in A, where 0 means the identity partition, is called elementary if and only if for every admissible partition π^{\prime} of S in $A, 0 \leq \pi^{\prime} \leq \pi$ implies $\pi^{\prime}=0$ or $\pi^{\prime}=\pi$.
3. Structure of elementary partitions. For the semiautomaton given in the preceding section, we shall construct following one-input semiautomata:

Put $\Sigma_{i}=\left\{\sigma_{i}\right\}$ and $M_{i}=\left\{\sigma_{i}^{A}\right\}=\left\{\sigma_{i}^{A_{i}}\right\}$ for each natural number $i(1 \leq i \leq n)$. Thus, we obtain the one-input semiautomata $A_{i}=\left(S, \Sigma_{i}, M_{i}\right)(1 \leq i \leq n)$.

For each semiautomaton $A_{i}(1 \leq i \leq n)$, the set of all elementary partitions of S in A_{i} can be determined by the procedure introduced in [1], [2]. We denote this set by \mathscr{P}_{i}.

We can now prove the following theorem on the structure of an elementary partition of S in A :

Theorem 1. If π is an elementary partition of S in A, then there exist elementary partitions $\rho_{i} \in \mathscr{P}_{i}(1 \leq i \leq n)$ such that $\tilde{\rho}=\pi$, where $\rho=\sum_{i=1}^{n} \rho_{i}$.

Proof. For each natural number $i(1 \leq i \leq n)$, we can consider π as an admissible partition of S in A_{i}. Thus, there exists an elementary partition $\rho_{i} \in \mathscr{P}_{i}$ such that $0<\rho_{i} \leq \pi$.

Now, we can take the sum of partitions $\rho=\sum_{i=1}^{n} \rho_{i}$. Then, it is easy to see that $0<\rho \leq \pi$. We consider the admissible closure $\tilde{\rho}$ of ρ in A. By virtue of $0<\rho \leq \pi$ and the admissibility of π in A, we get $0<\tilde{\rho}$ $\leq \pi$. Since π is elementary in $A, \tilde{\rho}$ must be equal to π.
Q.E.D.

Remark. The converse of the above theorem is not true. Indeed, there exist some elementary partitions $\rho_{i} \in \mathscr{P}_{i}(1 \leq i \leq n)$ such that $\tilde{\rho}$ is not elementary in A, where $\rho=\sum_{i=1}^{n} \rho_{i}$.

Example. Let $A=\left(\{1,2,3\},\left\{\sigma_{1}, \sigma_{2}\right\}, M\right)$ be a semiautomaton whose transition graph is the following:

Semiautomaton A

Semiautomaton A_{1}

$$
\begin{aligned}
& \rho_{1}=\{\{1,3\},\{2\}\} \\
& \rho_{2}=\{\{1\},\{2,3\}\}
\end{aligned}
$$

ρ_{1}, ρ_{2} are elementary in A_{1} and ρ_{1}^{\prime} is elementary in A_{2}.
$\rho_{11}=\rho_{1}+\rho_{1}^{\prime}=\{\{1,2,3\}\} \quad \tilde{\rho}_{11}=\{\{1,2,3\}\}$
$\rho_{21}=\rho_{2}+\rho_{1}^{\prime}=\{\{1\},\{2,3\}\} \quad \tilde{\rho}_{21}=\{\{1\},\{2,3\}\}$
$\tilde{\rho}_{21}$ is elementary in A, but $\tilde{\rho}_{11}$ is not so.
Theorem 2. Let $\rho_{i}(1 \leq i \leq n)$ be partitions such that $\rho_{i} \in \mathscr{P}_{i}$ and put $\rho=\sum_{i=1}^{n} \rho_{i}$. If there exist no partitions $\rho_{i}^{\prime} \in \mathscr{P}_{i}(1 \leq i \leq n)$ such that $\tilde{\rho}^{\prime}<\tilde{\rho}\left(\rho^{\prime}=\sum_{i=1}^{n} \rho_{i}^{\prime}\right)$, then $\tilde{\rho}$ is elementary in A.

Proof. Suppose $\tilde{\rho}$ not to be elementary in A under the above assumption. Then, there exists an elementary partition π in A such that $0<\pi<\tilde{\rho}$. In this case, from Theorem 1, there exist elementary partitions $\rho_{i}^{\prime} \in \mathscr{P}_{i}(1 \leq i \leq n)$ such that $\tilde{\rho}^{\prime}=\pi$, where $\rho^{\prime}=\sum_{i=1}^{n} \rho_{i}^{\prime}$. Consequently, we get $0<\tilde{\rho}^{\prime}=\pi<\tilde{\rho}$. But, this is a contradiction. Q.E.D.
4. Computation of $\tilde{\pi}$. Let π be a partition of S. For each natural number p, we construct inductively the partition $\pi^{(p)}$ of S,
starting with $\pi^{(0)}=\pi$. The construction method of $\pi^{(p)}(p \geq 1)$ from $\pi^{(p-1)}$ is as follows:

Let $\pi^{(p-1)}=\left\{B_{1}, B_{2}, \cdots, B_{m}\right\}$ be a partition of S, where each of B_{i} 's is a block of $\pi^{(p-1)}$.
(i) For each pair of numbers s, $t(1 \leq s \leq n, 1 \leq t \leq m)$, compute the set $B_{s t}=B_{t} \sigma_{\mathrm{s}}^{A}$.
(ii) For each pair of numbers $i, j(1 \leq i, j \leq m)$, check whether $B_{i} \sim B_{j}$, according to the following definition:
$B_{i} \sim B_{j}$ if and only if $B_{i}=B_{j}$, or there exist some numbers s, t $(1 \leq s \leq n, 1 \leq t \leq m)$ such that $B_{i} \cap B_{s t} \neq \emptyset, B_{j} \cap B_{s t} \neq \emptyset$.
(iii) For each pair of numbers $i, j(1 \leq i, j \leq m)$, check whether $B_{i} \approx B_{j}$, according to the following definition:
$B_{i} \approx B_{j}$ if and only if there exists some sequence of numbers $i=i_{0}, i_{1}, i_{2}, \cdots, i_{u}=j$ such that $B_{i_{w}} \sim B_{i_{w+1}}(w=0,1,2, \cdots, u-1)$.
(iv) For each natural number $i(1 \leq i \leq m)$, compute the set \bar{B}_{i} $=\bigcup_{B_{i} \approx B_{j}} B_{j}$.
(v) Let $\pi^{(p)}$ be the partition of S whose set of all blocks is $\left\{\bar{B}_{i}\right.$; $1 \leq i \leq m\}$.
From the following procedure, the admissible closure $\tilde{\pi}$ of π can be determined:
(vi) Find a number q such that $\pi^{(q)}=\pi^{(q=1)}$.
(vii) Put $\tilde{\pi}=\pi^{(q)}$.
5. Algorithm. We can now give the following algorithm for constructing all elementary partitions of the state set S in a semiautomaton $A=(S, \Sigma, M)\left(\Sigma=\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right\}\right)$:
(i) For each natural number $i(1 \leq i \leq n)$, construct the one-input semiautomaton $A_{i}=\left(S, \Sigma_{i}, M_{i}\right)$.
(ii) For each natural number $i(1 \leq i \leq n)$, construct the set of all elementary partitions of S in A_{i}, i.e., \mathscr{P}_{i}.
(iii) Construct the following set:

$$
\mathscr{P}=\left\{\rho ; \rho=\sum_{i=1}^{n} \rho_{i}, \rho_{i} \in \mathscr{P}_{i}\right\} .
$$

(iv) Construct the following set:

$$
\widetilde{\mathscr{P}}=\{\tilde{\rho} ; \rho \in \mathscr{P}\} .
$$

(v) For each element $\tilde{\rho}$ in $\widetilde{\mathscr{P}}$, construct the set $\widetilde{\mathscr{P}}(\tilde{\rho})=\{\tilde{\xi} ; \tilde{\rho}<\tilde{\xi}, \tilde{\xi} \in \widetilde{\mathscr{L}}\}$.
(vi) Compute the following set:

$$
\mathcal{E}=\widetilde{\mathscr{P}}-\bigcup_{\tilde{\rho} \in \widetilde{\mathscr{P}}} \widetilde{\mathscr{P}}(\tilde{\rho}) .
$$

(vii) $\quad \mathcal{E}$ forms the set of all elementary partitions of S in A.
6. Example. Let $A=\left(\{1,2,3,4,5\},\left\{\sigma_{1}, \sigma_{2}\right\}, M\right)$ be a semiautomaton whose transition graph is the following:

Semiautomaton A

Semiautomaton A_{1}

$$
\mathscr{P}_{1}=\left\{\rho_{1}, \rho_{2}\right\}
$$

$$
\rho_{1}=\{\{1,3\},\{2,4\},\{5\}\}
$$

$$
\rho_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}
$$

$$
\mathscr{P}=\left\{\rho_{11}, \rho_{12}, \rho_{21}, \rho_{22}\right\}
$$

$$
\rho_{11}=\rho_{1}+\rho_{1}^{\prime}=\{\{1,2,3,4\},\{5\}\}
$$

$$
\left.\rho_{12}=\rho_{1}+\rho_{2}^{\prime}=\{\{1,2,3,4\}\},\{5\}\right\}
$$

$$
\rho_{21}=\rho_{2}+\rho_{1}^{\prime}=\{\{1\},\{2,3,4,5\}\}
$$

$$
\rho_{22}=\rho_{2}+\rho_{2}^{\prime}=\{\{1,4,5\},\{2\},\{3\}\}
$$

$$
\widetilde{\mathscr{P}}=\{\{\{1,2,3,4\},\{5\}\},\{\{1,2,3,4,5\}\}\}
$$

$$
\mathcal{E}=\{\{\{1,2,3,4\},\{5\}\}\}
$$

Therefore, $\{\{1,2,3,4\},\{5\}\}$ is the unique elementary partition of $\{1,2,3,4,5\}$ in A.

References

[1] Ginzburg, A.: Algebraic Theory of Automata. Academic Press, New York-London (1968).
[2] Yoeli, M., and A. Ginzburg: On homomorphic images of transition graphs. J. Franklin Inst., 278, 291-296 (1964).

