156. On the Elementary Partitions of the State Set in a Multiple-Input Semiautomaton

By Masami Ito

Kyoto Sangyo University, Kyoto

(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1973)

1. Introduction. Determination of all homomorphic images of a given semiautomaton is equivalent to constructing all admissible partitions of its state set.

For the case of a one-input semiautomaton, there exists an efficient method for the construction of all admissible partitions. This can be done easily by determining all elementary partitions [1], [2].

For the case of a multiple-input semiautomaton, it seems complicated at first sight. But, even in this case, if all elementary partitions can be constructed, we can use the same procedure as the one-input case and we can obtain all admissible partitions.

In this note, we shall give an algorithm for constructing all elementary partitions of the state set in a multiple-input semiautomaton by using known elementary partitions for the one-input case. We shall borrow many notations and terms from [1].

2. Preliminaries. Consider a semiautomaton $A = (S, \Sigma, M)$, where S is a set of states, $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$ $(n \ge 2)$ is a set of inputs, and M is a set of transition mappings.

Definition 1. Let π be a partition of S. $\tilde{\pi}$ is called the admissible closure of π in A if and only if $\tilde{\pi} = \prod_{i \in A} \xi_i$, where $\{\xi_i : i \in A\}$ is the set of all admissible partitions in A such that $\pi \leq \xi_i (i \in A)$.

In section 4, we shall give a method for constructing the admissible closure $\tilde{\pi}$ of π .

Definition 2. An admissible partition $\pi \neq 0$ of S in A, where 0 means the identity partition, is called elementary if and only if for every admissible partition π' of S in $A, 0 \leq \pi' \leq \pi$ implies $\pi'=0$ or $\pi'=\pi$.

3. Structure of elementary partitions. For the semiautomaton given in the preceding section, we shall construct following one-input semiautomata:

Put $\Sigma_i = \{\sigma_i\}$ and $M_i = \{\sigma_i^A\} = \{\sigma_i^{A_i}\}$ for each natural number $i \ (1 \le i \le n)$. Thus, we obtain the one-input semiautomata $A_i = (S, \Sigma_i, M_i) \ (1 \le i \le n)$.

For each semiautomaton A_i $(1 \le i \le n)$, the set of all elementary partitions of S in A_i can be determined by the procedure introduced in [1], [2]. We denote this set by \mathcal{P}_i .

We can now prove the following theorem on the structure of an elementary partition of S in A:

Theorem 1. If π is an elementary partition of S in A, then there exist elementary partitions $\rho_i \in \mathcal{P}_i$ $(1 \le i \le n)$ such that $\tilde{\rho} = \pi$, where $\rho = \sum_{i=1}^n \rho_i$.

Proof. For each natural number i $(1 \le i \le n)$, we can consider π as an admissible partition of S in A_i . Thus, there exists an elementary partition $\rho_i \in \mathcal{P}_i$ such that $0 < \rho_i \le \pi$.

Now, we can take the sum of partitions $\rho = \sum_{i=1}^{n} \rho_i$. Then, it is easy to see that $0 < \rho \le \pi$. We consider the admissible closure $\tilde{\rho}$ of ρ in *A*. By virtue of $0 < \rho \le \pi$ and the admissibility of π in *A*, we get $0 < \tilde{\rho} \le \pi$. Since π is elementary in *A*, $\tilde{\rho}$ must be equal to π . Q.E.D.

Remark. The converse of the above theorem is not true. Indeed, there exist some elementary partitions $\rho_i \in \mathcal{P}_i$ $(1 \le i \le n)$ such that $\tilde{\rho}$ is not elementary in A, where $\rho = \sum_{i=1}^{n} \rho_i$.

Example. Let $A = (\{1, 2, 3\}, \{\sigma_1, \sigma_2\}, M)$ be a semiautomaton whose transition graph is the following:

 $\tilde{\rho}_{_{21}}$ is elementary in *A*, but $\tilde{\rho}_{_{11}}$ is not so.

Theorem 2. Let ρ_i $(1 \le i \le n)$ be partitions such that $\rho_i \in \mathcal{P}_i$ and put $\rho = \sum_{i=1}^{n} \rho_i$. If there exist no partitions $\rho'_i \in \mathcal{P}_i$ $(1 \le i \le n)$ such that $\tilde{\rho}' < \tilde{\rho}$ $(\rho' = \sum_{i=1}^{n} \rho'_i)$, then $\tilde{\rho}$ is elementary in A.

Proof. Suppose $\tilde{\rho}$ not to be elementary in A under the above assumption. Then, there exists an elementary partition π in A such that $0 < \pi < \tilde{\rho}$. In this case, from Theorem 1, there exist elementary partitions $\rho'_i \in \mathcal{P}_i$ $(1 \le i \le n)$ such that $\tilde{\rho}' = \pi$, where $\rho' = \sum_{i=1}^n \rho'_i$. Consequently, we get $0 < \tilde{\rho}' = \pi < \tilde{\rho}$. But, this is a contradiction. Q.E.D.

4. Computation of $\tilde{\pi}$. Let π be a partition of S. For each natural number p, we construct inductively the partition $\pi^{(p)}$ of S,

No. 9]

starting with $\pi^{(0)} = \pi$. The construction method of $\pi^{(p)}$ $(p \ge 1)$ from $\pi^{(p-1)}$ is as follows:

Let $\pi^{(p-1)} = \{B_1, B_2, \dots, B_m\}$ be a partition of S, where each of B_i 's is a block of $\pi^{(p-1)}$.

- (i) For each pair of numbers s, t $(1 \le s \le n, 1 \le t \le m)$, compute the set $B_{st} = B_t \sigma_s^A$.
- (ii) For each pair of numbers $i, j (1 \le i, j \le m)$, check whether $B_i \sim B_j$, according to the following definition:

 $B_i \sim B_j$ if and only if $B_i = B_j$, or there exist some numbers s, t ($1 \leq s \leq n, 1 \leq t \leq m$) such that $B_i \cap B_{st} \neq \emptyset, B_j \cap B_{st} \neq \emptyset$.

(iii) For each pair of numbers $i, j \ (1 \le i, j \le m)$, check whether $B_i \approx B_j$, according to the following definition:

 $B_i \approx B_j$ if and only if there exists some sequence of numbers $i=i_0, i_1, i_2, \dots, i_u=j$ such that $B_{i_w} \sim B_{i_{w+1}}$ (w=0, 1, 2, ..., u-1).

- (iv) For each natural number i $(1 \le i \le m)$, compute the set $\overline{B}_i = \bigcup_{B_i \approx B_i} B_j$.
- (v) Let $\pi^{(p)}$ be the partition of S whose set of all blocks is $\{\overline{B}_i; 1 \le i \le m\}$.

From the following procedure, the admissible closure $\tilde{\pi}$ of π can be determined:

- (vi) Find a number q such that $\pi^{(q)} = \pi^{(q-1)}$.
- (vii) Put $\tilde{\pi} = \pi^{(q)}$.

5. Algorithm. We can now give the following algorithm for constructing all elementary partitions of the state set S in a semi-automaton $A = (S, \Sigma, M)$ $(\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n\})$:

- (i) For each natural number i $(1 \le i \le n)$, construct the one-input semiautomaton $A_i = (S, \Sigma_i, M_i)$.
- (ii) For each natural number $i \ (1 \le i \le n)$, construct the set of all elementary partitions of S in A_i , i.e., \mathcal{P}_i .
- (iii) Construct the following set:

$$\mathcal{P} = \{ \rho; \rho = \sum_{i=1}^{n} \rho_i, \rho_i \in \mathcal{P}_i \}.$$

(iv) Construct the following set:

$$\widetilde{\mathcal{P}} = \{ \widetilde{\rho} ; \rho \in \mathcal{P} \}.$$

- (v) For each element $\tilde{\rho}$ in $\tilde{\mathcal{P}}$, construct the set $\tilde{\mathcal{P}}(\tilde{\rho}) = \{\tilde{\xi}; \tilde{\rho} < \tilde{\xi}, \tilde{\xi} \in \tilde{\mathcal{P}}\}.$
- (vi) Compute the following set:

$$\mathcal{E} = \tilde{\mathcal{P}} - \bigcup_{\tilde{\rho} \in \tilde{\mathcal{P}}} \tilde{\mathcal{P}}(\tilde{\rho}).$$

(vii) \mathcal{E} forms the set of all elementary partitions of S in A.

6. Example. Let $A = (\{1, 2, 3, 4, 5\}, \{\sigma_1, \sigma_2\}, M)$ be a semiautomaton whose transition graph is the following:

Therefore, $\{\{1, 2, 3, 4\}, \{5\}\}$ is the unique elementary partition of $\{1, 2, 3, 4, 5\}$ in A.

References

- [1] Ginzburg, A.: Algebraic Theory of Automata. Academic Press, New York—London (1968).
- [2] Yoeli, M., and A. Ginzburg: On homomorphic images of transition graphs. J. Franklin Inst., 278, 291-296 (1964).