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1. Introduction and results.
In this note, we shall consider the Cauchy problem

(1) Iu( x-) --P(D)u(t (t’ x) e (O c)

[u(0, x)=uo(x) x e R.
Here P(D) is the pseudo-differential operator of order d, that is,
( 2 ) P(D)u=F-I(St), u e
where S=,(s)<,< is the NN matrix of functions s in C’(R)
which satisfy, for all multi-indices a=(al,..., qn),
( 3 IDsj(y)IC(1 +lyl)-where C are constants depending on a, D (3/3y), (3/3y)- and
la]--a+...-Fan. The matrix S will be called the symbol of P. In the
above, ’, F- and denote the space of all N-tuples o distributions
in the dual space 3’ o the Schwartz space 2, the inverse Fourier trans-
formation and the Fourier transform of u, respectively. We assume
that the order d o P is positive.

Let (y) denote the eigenvalues of S(y) or ]= 1, 2, ., N. We say
that the Cauchy problem (1) is Petrovskii well posed if
( 4 ) Re j(y)<A, I<]<N, y e R,
are valid for some constant A. When the Cauchy problem (1) is
Petrovskii well posed, we can solve the problem in ’ and the solution
can be written as
( 5 u(t)--E(t)uo-F- (exp (tS)to) or u0 e
We call the operator E(t):Uo-U(t) the solution operator.

Let l<p oo. For u e L (the space of all N-tuples of functions
in L,(R’)), we set

.lu,,_ l(f,u(x) l dx)/ i

less sup {]u(x)l x e R} otherwise.
For a>O, let v(y)=(l+]y[)/ and

Ilult,=llF-(vo)ll, or u e L.
We define W,={u e L ull, c}.

Henceforth, for given p and q, we set ,(p,q)=max(1/2--1/p,
1/q-- 1/2, 0). Our results are the ollowing.
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Theorem 1. Assume that the Cauchy problem (1) is Petrovskii
well posed. Suppose that l <p<q< c. If

a- fl> n(1 /p 1/q) +nd(p q) + (N-- 1)d,
then the inequality
( 6 ) E(t)Uo IIq, < C(t) u0 II ,o, u0 e
holds with some function C(t) which is bounded by a constant multiple

of e(1 + t)-/r(,q). Moreover, if 1 <p<2<q< c, then the inequality
(6) is valid even when -fl=n(1/p--1/q)+nd(p, q)+(N--1)d.

Theorem 2. If a--<n(1/p--1/q)+ndy(p, q)+(N--1)d, then there
exists a pseudo-differential operator P(D) of order d for which the
Cauchy problem (1) is Petrovskii well posed and the solution operator
E(t) is not bounded from W to Wq, for each t>O. Further, if d=/= 1
and if p--1 or q= c, then the same conclusion as above holds for---n(1/p--1/q)+nd(p, q)+(N--1)d.

Remarks. Theorem 1 is a gener8lization of the results obtained
by SjSstrand [8] (for the SchrSdinger equation) and the author [7] (for
the case that N= 1 and S is a pure imaginary polynomial unction).

Considering L--Lq estimates or pseudo-differential operators,
HSrmander has obtained the essentially same result as Theorems 1 and
2 or the case d< 1 in [5].

2. Proof of Theorem 1.
We first defie

M,q-’M,q(R )--(A--(a)<,< a e ’ M,q(A)<
where

Mq(A)----sup (]]F-X(A)l]p u e G withP

When N--- 1, we. merely write M,q or M,q and, in case p--q, we shall
omit the subscript q of M,q. We refer to HSrmander [4] and Brenner
[2] for the relevant facts about M

The ollowing Lemma 1 is fundamental.
Lemma 1. A--(a)<,< belongs to M,q if and only if a e ip,q

for all i, ], 1 < i, ]<N. Moreover, the inequality
( 7 ) c M,q(A) <max (M.q(a) 1 < i, ] N)< C M,q(A)
holds for some constants c,CO.

The proof is easy and so we omit it.
We need two more lemmas to prove the theorem. For any N N

matrix A, re(A) will denote the matrix norm, that is,
m(A)=sup {]Au] u e R, ]u]= 1}.

Lemma 2 (Bernstein’s theorem), Let J--[n/2]+l. Let A-(a)
be a N N matrix satisfying a e C(R) for all i, ], 1 i, ]N. Sup-
pose that m(D’A) e L(R) for all a, lalJ. Then, A eM and the in-
equality

( ) Mf(A)<C m(A)IIA
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Proof.
we have

holds for some constant CO.
By the usual Bernstein’s theorem (see e.g. SjSstrand [8]),

M(a)<Cllall-/() IID"all

Hence, by Lemma 1, we get

M(A) C’ re(A)ll-/(a) Z m(D’A) II
This proves Lemma 2.

Lemma . Let B be a NXN matrix and ,IN, be eigen-
values of B. Set A=max(Re;lN). The ollowing estimate
holds"

-1

( 9 ) m(e’) e (2m(B)).

For the proo of this lemma, we refer to Gelfand-Shilov [3].
Proo o Theorem 1. Without any loss of generality, we may

assume fl=0. Let us set A(, y)=(l+ly])-"/es() for (, y) (0,
We shall show below that
(10) Mq(A(t)) C(t),
which proves Theorem 1 when p. When p=, Theorem 1 is a
stronger assertion than (10) and we need a sligh modification. For
such a modification, see he author [7].

We divide our consideration into three cases. We firs consider
the case lp2q. Whenpl andq, weset =n(1/p--1/2)
and v=n(1/2- l/q). Putting A’(t, y)-v:(y)A(t, y)v,(y) for y R, we
have
(11) m(A’(t, y)) CC(t)
by Lemma 3 and the assumption on , and hence A’(t) M.

By the Hardy-Littlewood-Sobolev theorem, we see that
and v_, Mq. Therefore, A(t)=v_:A’(t)v_, Mq and
(12) M,q(A(t)) CC(t).
By the assumption on a, it is possible o ake n(1/p--1/2) (when
p=l) and n(1/2-1/q) (when q=), so that the inequality (11)
holds. So we can show (12) in the same manner as above in case p

Next we urn to the case lpq2. We divide a into
where a’nd(1/q--1/2)+(N--1)d and ’n(1/p--1/q). Define A’(t, y)

v_,,(y)es(v) or (t, y) (0,)R. Let us choose a function 0(v) in
C(R) which equals o 1 or rl and vanishes or r2, and we pu
(v)=0(2-v)--0(2-+v) or k=1,2,.... We decompose A" as

=:0A’, where A’(t, y)=([yl)A’(t, y). By Lemma 3, we have
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m(ets()) Ce’(1 + t)-(1 +[y
Using this estimate and (3), we easily get

m(DA’’(t, y)) <Ce(1+ t)+-2(-)-"’+(-).
Hence, by Lemma 2,

N )n/+(-)2nd/-a’+(N-)dM (A (t)) < Cet(1 +
It is easy to see from Lemmas 1 and 3 that

M(A’(t)) C m(A’(t)) C’e(1 + t)-2(-)-"’.
Applying the Riesz-Thorin’s convexity theorem, we obtain

Mq (A (t)) Cet(l + t)-+(/q-/)2
Summing over all k, we have

M(A"(t)) Mq(A"(t)) Cet(1 + t)-+n(/q-/)

On the other hand, by the Hardy-Littlewood-Sobolev theorem, we get
v_,,, e M,. Therefore, we have

M (A(t))< C(t)pq

In case 2 p q , our theorem is easily shown by the standard
duality argument. This finishes the proof.. Proof of Theorem 2.

We begin with the well-known lemma.
Lemma 4. Set v(y)=(l+[y])/ for y eR. If 3--n(1/p--1/q)

and l<p<q, then v e M.q. Moreover, in case p= 1 or q=,
v e M,q for n(1 /p 1/q).

For the proof, see Stein [9].
The next lemma was proved by Wainger [10] (0dl and p=q),

HSrmander [5] (0dl) and SjSstrand [8] (dl and p=q). Here and
later the letter denotes a unction in C(R) satisfying (r)=1 or
r 2 and (r) 0 or r 1, and let w(y) (y ]) ]y ]- exp (i ]y #) or y e R
and d0.

Lemma 5. If dl, lpq2andn(1/p-1/q)+nd(1/q--1/2),
thenw e M,q(R). Especially, if p=l, thenw e M,q for 6=n(1/p--1/q)
+nd(1/q- 1/2).

Proof. First we assume n(1/p--1/q)+nd(1/q--1/2). Let p’
=p/(p--1) and (y)=(]y])]y]-O with O=n/p’+n(1/p--1/q)+nd(1/q
--1/2)--. We know that g e L(Rn) since On/p’ (see SjSstrand [8]).
Putting (y)=w(y)(y) or y e R, the asymptotic behavior o f is as
ollows" (i) If d 1, then
(13) f(x) ]=C,+ x (---/)/(-) + O([ x )
as [x], where (n--O-nd/2)/(d--1) and where C,+o is a posi-
rive constant.

(ii) I d1, then
(14) ]f(x)]=C,+[x](---/)/(-) + O(]x])
as [x0, where (n-6-O-nd/2)/(d--1) and where C,+o is a posi-



No. 9] Petrovskii Well Posed Cauchy Problems 709

rive constant.
Since q(n--t-nd/2)/(d-1)=-n, f does not belong to L(R).

This means w e M,(R).
We turn to the case p=l and =n(1/p-1/q)+nd(1/q-1/2). It

is well-known (see HSrmander [4]) that
M,--FL or q 1 and M FM.

Here FL denotes the space of all Fourier transforms of unctions in

L and FM denotes the space of all Fourier-Stieltjes transforms of
bounded measures.

On the other hand, the inverse Fourier transform of the unction

w is asymptotically described by the right hand side of (13)or (14)
with 0=0. So we have weM, since q(n-6--nd/2)/(d-1)=--n.
Thus we have proved Lemma 5.

Proof of Theorem 2. Seeing that M,={0} or pq (see
HSrmander [4]), we assume below thatpq. We may also assume ’=0.
The proof will be divided into three cases.

We first treat the case p<2< q. Let us define the N N matrix
S by

(15) S(y) (1 +IY 1)/ ’. ". or y e R.
\0

The (1, N) element of ets() is given by
1 (1 +lyl)(-)/t-.

(N--l)
Therefore, in view o Lemmas 1 and 4, we see that

(1 +[yl2)-"/ets() e M,q.
It is now easily checked that the pseudo-differential operator P(D)
defined by (2) satisfies the desired properties.

We turn to the case dl and l<p<q2 (or 2p<qc). Let

(16) S(y)=i(ly]) ]yl "..’. y e Rn,
0

where the matrix is NN. Then, the (1, N) element of the matrix
unction ets() is

(ly{)- ]y[- exp (i(]y])]y])t-.
(N--l)

When 1 p q 2, by Lemma 5, we easily see that the (1, N) element of
(l+y)-"/e() does not belong to M,q. When2pq, it is shown
by the duality argument that the same is also true. It ollows from
Lemma 1 that (l+[y])-/eS()e

us set
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In case when d=l and lp<q2 (or 2p<q<oo), we construct
the pseudo-differential operator having the required properties for
each p, q and a. For fixed p, q and a satisfying a n(1/p-- 1 / q) + n’(p, q)
+N--l, we choose a number d’ which is smaller than 1 and satisfies
an(1/p--1/q)+nd’.(p, q)+(N-1)d’. Then, the symbol S givin by (16)
replaced d by d’ defines the pseudo-differential operator having the
required properties. The proof is completed.
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