7. On a Relation between Characters of Discrete and Non-Unitary Principal Series Representations

By Hisaichi MIDORIKAWA Department of Mathematics, Tsuda College

(Comm. by Kunihiko KODAIRA, M. J. A., Jan. 12, 1974)

§ 1. Introduction. For the general linear group G=SL(2, R), it was proved by I. M. Gelfand and M. I. Graev, N. Ya Vilenkin in [6] that the quotient representation of certain non-unitary principal series representations by its finite dimensional invariant subrepresentation is infinitesimally equivalent to a representation which belongs to the discrete series.

Our purpose is to prove a similar relation for any group G satisfying the following conditions:

(C.1) G is a connected real simple Lie group.

(C.2) There is a simply connected complex simple Lie group G_c which is the complexification of G.

(C.3) The symmetric space G/K is of rank one and G has a compact Cartan subgroup, where K denotes the maximal compact subgroup of G.

In § 3, we prove the relation using the explicit character formulas for the representations in discrete series and in non-unitary principal series obtained by Harish-Chandra ([2], [4], [5]).

In §4, we state some results for G = Spin(2l, 1) $(l \ge 1)$ using Theorem 1.

§ 2. Preliminaries. Let G be a Lie group satisfying conditions C.1, C.2 and C. 3 with Lie algebra g. We shall always denote by \mathfrak{L}_c the complexification of Lie sub-algebra \mathfrak{L} of g. By C.2, \mathfrak{g}_c is the Lie algebra of G_c .

Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition and K be the analytic subgroup of G whose Lie algebra is \mathfrak{k} . We shall fix a Cartan subalgebra $\mathfrak{b}(\subset \mathfrak{k})$ of \mathfrak{g} . Let Ω be the non-zero root system of \mathfrak{g}_c with respect to \mathfrak{b}_c . For any root α , we can select a root vector X_α such that $B(X_\alpha, X_{-\alpha})=1$ (Where B is the Killing form of \mathfrak{g}_c). As usual we identify \mathfrak{b}_c with the dual space of \mathfrak{b}_c by the relation $\lambda(H)=B(H,H_\lambda)$ and denote (λ,μ) $=B(H_\lambda,H_\mu)$ for two linear functions λ,μ on \mathfrak{b}_c . Then we have $[X_\alpha, X_{-\alpha}]$ $=H_\alpha$ for any root $\alpha \in \Omega$. For a fixed non-compact root γ , we select a compatible ordering in dual space of RH_γ and $\sqrt{-1}b$ such that $\gamma>0$. Put H. MIDORIKAWA

$$y = \exp\left\{\frac{\sqrt{-1\pi}}{4} \cdot 2^{1/2}((\gamma, \gamma))^{-1/2}(X_{\gamma} - X_{-\gamma})\right\} \in G_{c}.$$

Then $Ad(y^{-1})b_c = a_c$ where a is a Cartan subalgebra of g. Let $a_R = R\sqrt{-1}(X_r + X_{-r})$ and $a_I = a \cap \mathfrak{k}$. Then $= a_R + a_I$ and $\{a, b\}$ is a complete set of representatives of non-conjugate Cartan subalgebras in g. Since $b_c = Ad(y)a_c$, for any linear function λ on b_c , we can define a linear function λ^y on a_c as follows;

 $\lambda^{y}(H) = \lambda(Ad(y)H)$ for all $H \in \mathfrak{a}_{c}$.

In this way $\Omega^{y} = \{\alpha^{y} | \alpha \in \Omega\}$ is the non zero root system of \mathfrak{g}_{c} with respect to \mathfrak{a}_{c} . The ordering of Ω induces a lexicographic order in Ω^{y} .

For any root $\alpha \in \Omega^y$, put $\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g}_c | ad(H)X = \alpha(H)X \text{ for all } H \in \mathfrak{a}_c\}$. Then $\mathfrak{g}_c = \mathfrak{a}_c + \sum_{\alpha \in \Omega^y} \mathfrak{g}_{\alpha}$.

Put $n = g \cap \sum_{\alpha \in \mathcal{B}^{\mathcal{Y}, (\alpha, \gamma^{\mathcal{Y}}) > 0}} g_{\alpha}$ and let A_R and N be the analytic subgroups of G corresponding to a_R and n. Then $G = KA_RN$. Define the functionals ρ_+, ρ_- on a_c as follows:

$$\rho_{+} = \frac{1}{2} \sum_{\alpha \in \Omega^{y}, \alpha > 0, (\alpha, \gamma^{y}) \neq 0} \alpha, \qquad \rho_{-} = \frac{1}{2} \sum_{\alpha \in \Omega^{y}, \alpha > 0(\alpha, \gamma^{y}) = 0} \alpha.$$

And define the functional ρ on \mathfrak{b}_c by $\rho = \frac{1}{2} \sum_{\alpha \in \Omega, \alpha > 0} \alpha$.

§ 3. Main result. Let $dk(k \in K)$ be the Haar measure of K normalized as $\int_{K} dk = 1$. And let $L_2(K)$ be the set of all square integrable functions on K with respect to dk. For any $x \in G$ and any $k \in K$, define $H(x, k) (\in \alpha_R), k_x (\in K)$ as follows:

 $xk \in k_x \exp H(x, k)N, \quad k_x \in K, \quad \exp H(x, k) \in A_R.$

Let M be the centralizer of α_R in K. Then M is compact. Let σ be an irreducible unitary representation of M and μ be a linear function on α_R . Put $L_2^{\sigma}(K)$ by

 $L_2^{\sigma}(K) = \{ \phi \in L_2(K) | \phi(mk) = \sigma(m)\phi(k) \}.$

Define the representation $T^{\sigma,\mu}$ of G as follows:

 $[T^{\sigma,\mu}(x)\phi](k) = e^{-(\mu+\rho+)(H(x^{-1},k))}\phi(kx^{-1}),$

for all $x \in G$ and all $\phi = \phi(k) \in L_2^{\sigma}(K)$.

Then the trace of $T^{\sigma,\mu}$ defines a distribution on G (see [2]).

We shall denote this distribution by trace $T^{\sigma,\mu}$.

Let $W(W_t)$ be the Weyl group of \mathfrak{g}_c (resp. \mathfrak{k}_c) with respect to b_c . Put $W_0 = \{s \in W | s \mathfrak{a}_I = \mathfrak{a}_I\}$. Then W_0 is a subgroup of W. Put $\Omega_0 = \{\alpha \in \Omega | \alpha = \gamma \text{ or } \alpha \text{ is positive such that } (\alpha, \gamma) = 0\}$. Define the subset W_1 of W by $W_1 = \{s \in W | s \alpha > 0 \text{ for all } \alpha \in \Omega_0\}$.

For any dominant integral form λ on \mathfrak{b}_c and any $s \in W_1$, define the linear form $\mu = \mu(s, \lambda)$ on \mathfrak{a}_c and the irreducible representation $\sigma(s, \lambda)$ of M as follows:

 $\mu(s,\lambda)(H) = (s(\lambda + \rho))^{\nu}(H) \quad \text{for all } H \in \mathfrak{a}_R,$

 $\sigma(s, \lambda)$ = the irreducible representation of M with the highest weight

 $(s(\lambda+\rho))^{y}-\rho_{-}|\alpha_{I},$ where $(s(\lambda+\rho))^{y}-\rho_{-}|\alpha_{I}$ is the restriction of linear form $(s(\lambda+\rho))^{y}-\rho_{-}$ on a to α_{I} .

Define the representation $V_{s(\lambda+\rho)}$ of G by

 $V_{\mathfrak{s}(\lambda+\varrho)}(x) = T^{\sigma(\mathfrak{s},\lambda),\mu(\mathfrak{s},\lambda)}(x), \qquad (x \in G).$

In the following, we denote by λ a dominant integral form on \mathfrak{b}_c . Let $\pi_{\lambda+\rho}$ be the finite dimensional irreducible representation of G with the highest weight λ . Then trace $\pi_{\lambda+\rho}$ defines a distribution on G by

$$[\operatorname{trace}(\pi_{\lambda+\rho})](f) = \int_{\mathcal{G}} \operatorname{trace} \pi_{\lambda+\rho}(x) f(x) dx$$

for any $f \in C_c^{\infty}(G)$, where $C_c^{\infty}(G)$ is the set of all C^{∞} -functions on G with compact supports, and $dx(x \in G)$ is a Haar measure on G. Let $\Theta_{s(\lambda+\rho)}(s \in W)$ be the Harish-Chandra's character for discrete series [5]. Then we have the following theorem.

Theorem 1. Let $\Theta^*_{\lambda+\rho} = \sum_{s \in W_{\mathbf{1}} \setminus W} \Theta_{s(\lambda+\rho)}$. Then we have

$$\Theta_{\lambda+\rho}^* = (-1)^q \Big\{ \operatorname{trace} \pi_{\lambda+\rho} - \sum_{s \in W_1} \varepsilon(s) \operatorname{trace} [V_{s(\lambda+\rho)}] \Big\},$$

where $q = \frac{1}{2} \dim G/K$.

Our proof of this theorem is obtained from the explicit formulas of characters $\Theta_{s(\lambda+\rho)}$ ([2]–[5]) and trace $V_{s'(\lambda+\rho)}(s' \in W_1)([2])$.

§ 4. An application. Let \mathcal{C}_K be the set of all equivalence classes of irreducible representations of K. For any representation π of K, we denote the multiplicity of δ in π by $[\pi; \delta]$ ($\delta \in \mathcal{C}_K$). And by $\tau | K$, we mean the restriction of a representation r of G to K. For any $f \in C_c^{\infty}(G)$, we define the function f^{δ} by $f^{\delta}(x) = \bar{\chi}_{\delta} * f * \bar{\chi}_{\delta}(x) (x \in G)$ where * is the convolution on K and $\chi_{\delta} = \deg(\delta)$ trace (δ).

In this section, we shall assume that $G = \text{Spin}(2l, 1)(l \ge 1)$. Let $P_{\mathfrak{p}}$ be the set of all non-compact positive roots in Ω . Then $P_{\mathfrak{p}} = \{\lambda_1, \lambda_2, \dots, \lambda_l\}$ $(l = \dim \mathfrak{b})$, where $\lambda'_{\mathfrak{s}}$ are linear forms which are mutually orthogonal with respect to the Killing form B. And the set $P_{\mathfrak{r}}$ of all compact positive roots is

$$\{\lambda_i \pm \lambda_j | 1 \leq i \leq j \leq l\}.$$

Let λ be a dominant integral form on \mathfrak{b}_c . Then $= m_1 \lambda_1 + m_2 \lambda_2 + \cdots + m_l \lambda_l$, $m_1 \ge m_2 \ge \cdots \ge m_l \ge 0$, and m'_l s are either all integers or all strict half integers. Put

$$\mathcal{E}_{\lambda} = \left\{ \eta = \sum_{i=1}^{l} \eta_{i} \lambda_{i} | \eta_{1} \ge m_{1} + 1 \ge \eta_{2} \ge \cdots \ge \eta_{l} \ge m_{l} + 1, \\ \eta_{i} \equiv m_{i} \pmod{Z} \qquad i = 1, 2, \cdots, l \right\}$$

where Z is the set of all integers. Then we have the following formulas for any function $f \in C_c^{\infty}(G)$.

No. 1]

H. MIDORIKAWA

[Vol. 50,

Theorem 2. 1) For any irreducible representation $\delta = \delta_n$ of K which has the highest weight $\eta \in \mathcal{E}_{\lambda}$.

$$\Theta_{\lambda+q}^*(f^{\delta}) = (\text{trace } V_{\mathfrak{s}_0(\lambda+q)})(f^{\delta})$$

where $s_0 = s_{\lambda_l - \lambda_{l-1}} s_{\lambda_l - \lambda_{l-2}} \cdots s_{\lambda_l - \lambda_1} (\in W_1).$

2) For the representation $\omega_{\lambda+\rho}$ corresponding to $\Theta^*_{\lambda+\rho}$

 $[\omega_{\lambda+\rho}|K;\delta] = 1 \quad for all \ \delta = \delta_{\eta}(\eta \in \mathcal{E}_{\lambda}).$

Remark. This result is known (T. Hirai [7], [8]). But we shall prove it by a different method from his. For the proof of Theorem 2, we shall state two lemmas.

Lemma 1. Let $\pi_{\lambda+\rho}$ be the same as in Theorem 1. Then

 $[\pi_{\lambda+\rho}|K;\delta]=0 \quad for \ all \ \delta=\delta_{\eta}(\eta\in\mathcal{E}_{\lambda}).$

Proof. Let ν be a weight which occurs in $\pi_{\lambda+\rho}|K$ with respect to \mathfrak{b}_c . Then $(\nu + \rho_t, \nu + \rho_t) < (\eta + \rho_t, \eta + \rho_t)$ for all $\eta \in \mathcal{C}_\lambda$ where $\rho_t = \frac{1}{2} \sum_{\alpha \in P_t} \alpha$.

Lemma 2. Let $\delta = \delta_s$ be the irreducible representation of K with the highest weight $\kappa = \kappa_1 \lambda_1 + \cdots + \kappa_l \lambda_l$ on b.

For the restriction $\delta | M$ of representation δ of K to M,

$$\mathfrak{H}_{\kappa}|M = \bigoplus_{\kappa_1 \geq \nu_2 \geq \cdots \geq \nu_l \geq |\kappa_l|} \pi'_{\nu}$$

where π'_{ν} is the irreducible representation of M with highest the weight $\nu = \nu_2 \lambda_2 + \cdots + \nu_l \lambda_l$.

For the proof of Lemma 2, see [1].

Proof of Theorem 2. By Lemma 1, (trace $\pi_{\lambda+\rho}(f^{\delta})=0$ for all $\delta = \delta_n (\eta \in \mathcal{E}_{\lambda})$. By Lemma 2 and Frobenius reciprocity theorem applied to the induced representation $V_{s(\lambda+\rho)}|K$, we have

 $[V_{s(\lambda+\rho)}|K;\delta]=0 \quad \text{if } s_0 \neq s \in W_1,$

and

 $[V_{s_0(\lambda+\rho)}|K;\delta]=1$ for any $\delta=\delta_{\eta}(\eta\in\mathcal{E}_{\lambda}).$

So we have Theorem 2.

References

- [1] H. Boerner: Darstellungen von Gruppen. Berlin, Springer-Verlag (1955).
- [2] Harish-Chandra: The plancherel formula for complex semi-simple Lie groups. Trans. Amer. Math. Soc., 76, 485-528 (1954).
- ----: Discrete series for semi-simple Lie groups. I. Acta Math., 113, 241-[3] -318 (1965).
- [4] ----: Two theorems on semi-simple Lie groups. Ann. of Math., 83, 74-128 (1966).
- -: Discrete series for semi-simple Lie groups. II. Acta Math., 116, [5] -1-111 (1966).
- [6] I. M. Gelfand, M. I. Graev, and N. YA. Vilenkin: Generalized Functions. V. Acad. Press, pp. 395–398.
- [7] T. Hirai: On irreducible representations of Lorentz group of n-th order. Proc. Japan Acad., 38, 258-262 (1962).
- [8] ----: The characters of irreducible representations of the Lorentz group of n-th order. Proc. Japan Acad., 41, 526-531 (1965).

So we have Lemma 1.