7. On a Relation between Characters of Discrete and Non-Unitary Principal Series Representations

By Hisaichi Midorikawa
Department of Mathematics, Tsuda College
(Comm. by Kunihiko Kodaira, m. J. A., Jan. 12, 1974)

§ 1. Introduction. For the general linear group $G=S L(2, R)$, it was proved by I. M. Gelfand and M. I. Graev, N. Ya Vilenkin in [6] that the quotient representation of certain non-unitary principal series representations by its finite dimentional invariant subrepresentation is infinitesimaly equivalent to a representation which belongs to the discrete series.

Our purpose is to prove a similar relation for any group G satisfying the following conditions:
(C.1) G is a connected real simple Lie group.
(C.2) There is a simply connected complex simple Lie group G_{c} which is the complexification of G.
(C.3) The symmetric space G / K is of rank one and G has a compact Cartan subgroup, where K denotes the maximal compact subgroup of G.

In § 3, we prove the relation using the explicit character formulas for the representations in discrete series and in non-unitary principal series obtained by Harish-Chandra ([2], [4], [5]).

In §4, we state some results for $G=\operatorname{Spin}(2 l, 1)(l \geqq 1)$ using Theorem 1 .
§ 2. Preliminaries. Let G be a Lie group satisfying conditions C.1, C. 2 and C. 3 with Lie algebra g. We shall always denote by \mathfrak{R}_{c} the complexification of Lie sub-algebra \mathfrak{R} of g. By C.2, g_{c} is the Lie algebra of G_{c}.

Let $g=\mathfrak{f}+\mathfrak{p}$ be a Cartan decomposition and K be the analytic subgroup of G whose Lie algebra is \mathfrak{f}. We shall fix a Cartan subalgebra $\mathfrak{b}(\subset \mathfrak{f})$ of \mathfrak{g}. Let Ω be the non-zero root system of \mathfrak{g}_{c} with respect to \mathfrak{b}_{c}. For any root α, we can select a root vector X_{α} such that $B\left(X_{\alpha}, X_{-\alpha}\right)=1$ (Where B is the Killing form of g_{c}). As usual we identify \mathfrak{b}_{c} with the dual space of \mathfrak{b}_{c} by the relation $\lambda(H)=B\left(H, H_{\lambda}\right)$ and denote (λ, μ) $=B\left(H_{\lambda}, H_{\mu}\right)$ for two linear functions λ, μ on \mathfrak{b}_{c}. Then we have [$X_{\alpha}, X_{-\alpha}$] $=H_{\alpha}$ for any root $\alpha \in \Omega$. For a fixed non-compact root γ, we select a compatible ordering in dual space of $R H_{r}$ and $\sqrt{-1} b$ such that $\gamma>0$. Put

$$
y=\exp \left\{\frac{\sqrt{-1} \pi}{4} \cdot 2^{1 / 2}((\gamma, \gamma))^{-1 / 2}\left(X_{\gamma}-X_{-\gamma}\right)\right\} \in G_{c} .
$$

Then $A d\left(y^{-1}\right) \mathfrak{b}_{c}=\mathfrak{a}_{c}$ where \mathfrak{a} is a Cartan subalgebra of g. Let \mathfrak{a}_{R} $=R \sqrt{-1}\left(X_{r}+X_{-r}\right)$ and $\mathfrak{a}_{I}=\mathfrak{a} \cap \mathfrak{f}$. Then $=\mathfrak{a}_{R}+\mathfrak{a}_{I}$ and $\{\mathfrak{a}, \mathfrak{b}\}$ is a complete set of representatives of non-conjugate Cartan subalgebras in g. Since $\mathfrak{b}_{c}=A d(y) \mathfrak{a}_{c}$, for any linear function λ on \mathfrak{b}_{c}, we can define a linear function λ^{y} on \mathfrak{a}_{c} as follows;

$$
\lambda^{y}(H)=\lambda(\operatorname{Ad}(y) H) \quad \text { for all } H \in \mathfrak{a}_{c}
$$

In this way $\Omega^{y}=\left\{\alpha^{y} \mid \alpha \in \Omega\right\}$ is the non zero root system of \mathfrak{g}_{c} with respect to \mathfrak{a}_{c}. The ordering of Ω induces a lexicographic order in Ω^{y}.

For any root $\alpha \in \Omega^{y}$, put $\mathfrak{g}_{\alpha}=\left\{X \in \mathfrak{g}_{c} \mid \alpha d(H) X=\alpha(H) X\right.$ for all $\left.H \in \mathfrak{a}_{c}\right\}$. Then $g_{c}=\mathfrak{a}_{c}+\sum_{\alpha \in \alpha^{\prime}} g_{\alpha}$.

Put $\left.\mathfrak{n}=\mathfrak{g} \cap \sum_{\alpha \in \Omega y,\left(\alpha, r^{v}\right)>0} \mathfrak{g}_{\alpha}\right)$ and let A_{R} and N be the analytic subgroups of G corresponding to \mathfrak{a}_{R} and \mathfrak{n}. Then $G=K A_{R} N$. Define the functionals ρ_{+}, ρ_{-}on \mathfrak{a}_{c} as follows:

$$
\rho_{+}=\frac{1}{2} \sum_{\alpha \in \Omega y, \alpha>0,\left(\alpha, r^{y}\right) \neq 0} \alpha, \quad \rho_{-}=\frac{1}{2} \sum_{\alpha \in \Omega y, \alpha>0\left(\alpha, r^{y}\right)=0} \alpha .
$$

And define the functional ρ on \mathfrak{b}_{c} by $\rho=\frac{1}{2} \sum_{\alpha \in \Omega, \alpha>0} \alpha$.
§3. Main result. Let $d k(k \in K)$ be the Haar measure of K normalized as $\int_{K} d k=1$. And let $L_{2}(K)$ be the set of all square integrable functions on K with respect to $d k$. For any $x \in G$ and any $k \in K$, define $H(x, k)\left(\in \mathfrak{a}_{R}\right), k_{x}(\in K)$ as follows:

$$
x k \in k_{x} \exp H(x, k) N, \quad k_{x} \in K, \quad \exp H(x, k) \in A_{R}
$$

Let M be the centralizer of \mathfrak{a}_{R} in K. Then M is compact. Let σ be an irreducible unitary representation of M and μ be a linear function on \mathfrak{a}_{R}. Put $L_{2}^{\sigma}(K)$ by

$$
L_{2}^{\sigma}(K)=\left\{\phi \in L_{2}(K) \mid \phi(m k)=\sigma(m) \phi(k)\right\} .
$$

Define the representation $T^{\sigma, \mu}$ of G as follows:

$$
\left[T^{\sigma, \mu}(x) \phi\right](k)=e^{-(\mu+\rho+)(H(x-1, k))} \phi\left(k x^{-1}\right)
$$

for all $x \in G$ and all $\phi=\phi(k) \in L_{2}^{\sigma}(K)$.
Then the trace of $T^{\sigma, \mu}$ defines a distribution on G (see [2]).
We shall denote this distribution by trace $T^{\sigma,{ }_{\mu}^{u}}$.
Let $W\left(W_{t}\right)$ be the Weyl group of g_{c} (resp. \mathfrak{f}_{c}) with respect to b_{c}. Put $W_{0}=\left\{s \in W \mid s a_{I}=\mathfrak{a}_{I}\right\}$. Then W_{0} is a subgroup of W. Put Ω_{0} $=\{\alpha \in \Omega \mid \alpha=\gamma$ or α is positive such that $(\alpha, \gamma)=0\}$. Define the subset W_{1} of W by $W_{1}=\left\{s \in W \mid s \alpha>0\right.$ for all $\left.\alpha \in \Omega_{0}\right\}$.

For any dominant integral form λ on \mathfrak{b}_{c} and any $s \in W_{1}$, define the linear form $\mu=\mu(s, \lambda)$ on \mathfrak{a}_{c} and the irreducible representation $\sigma(s, \lambda)$ of M as follows:

$$
\mu(s, \lambda)(H)=(s(\lambda+\rho))^{v}(H) \quad \text { for all } H \in \mathfrak{a}_{R}
$$

$\sigma(s, \lambda)=$ the irreducible representation of M with the highest weight $(s(\lambda+\rho))^{y}-\rho_{-} \mid \mathfrak{a}_{I}$, where $(s(\lambda+\rho))^{y}-\rho_{-} \mid \mathfrak{a}_{I}$ is the restriction of linear form $(s(\lambda+\rho))^{y}-\rho_{-}$on \mathfrak{a} to \mathfrak{a}_{I}.
Define the representation $V_{s(\lambda+\rho)}$ of G by

$$
V_{s(\lambda+\rho)}(x)=T^{\sigma(s, \lambda), \mu(s, \lambda)}(x), \quad(x \in G) .
$$

In the following, we denote by λ a dominant integral form on \mathfrak{b}_{c}. Let $\pi_{\lambda+\rho}$ be the finite dimensional irreducible representation of G with the highest weight λ. Then trace $\pi_{\lambda+\rho}$ defines a distribution on G by

$$
\left[\operatorname{trace}\left(\pi_{\lambda+\rho}\right)\right](f)=\int_{G} \operatorname{trace} \pi_{\lambda+\rho}(x) f(x) d x
$$

for any $f \in C_{c}^{\infty}(G)$, where $C_{c}^{\infty}(G)$ is the set of all C^{∞}-functions on G with compact supports, and $d x(x \in G)$ is a Haar measure on G. Let $\Theta_{s(\lambda+\rho)}(s \in W)$ be the Harish-Chandra's character for discrete series [5]. Then we have the following theorem.

Theorem 1. Let $\Theta^{*}{ }_{\lambda+\rho}=\sum_{s \in W_{\mathrm{t}} \mid W} \Theta_{s(\lambda+\rho)}$. Then we have

$$
\Theta_{\lambda+\rho}^{*}=(-1)^{q}\left\{\operatorname{trace} \pi_{\lambda+\rho}-\sum_{s \in W_{1}} \varepsilon(s) \operatorname{trace}\left[V_{s(\lambda+\rho)}\right]\right\},
$$

where $q=\frac{1}{2} \operatorname{dim} G / K$.
Our proof of this theorem is obtained from the explicit formulas of characters $\Theta_{s(\lambda+\rho)}([2]-[5])$ and trace $V_{s^{\prime}(\lambda+\rho)}\left(s^{\prime} \in W_{1}\right)([2])$.
§ 4. An application. Let \mathcal{E}_{K} be the set of all equivalence classes of irreducible representations of K. For any representation π of K, we denote the multiplicity of δ in π by $[\pi ; \delta]\left(\delta \in \mathcal{E}_{K}\right)$. And by $\tau \mid K$, we mean the restriction of a representation r of G to K. For any $f \in C_{c}^{\infty}(G)$, we define the function f^{δ} by $f^{\delta}(x)=\bar{\chi}_{\delta} * f * \bar{\chi}_{\delta}(x)(x \in G)$ where $*$ is the convolution on K and $\chi_{\delta}=\operatorname{deg}(\delta)$ trace (δ).

In this section, we shall assume that $G=\operatorname{Spin}(2 l, 1)(l \geqq 1)$. Let $P_{\mathfrak{p}}$ be the set of all non-compact positive roots in Ω. Then $P_{p}=\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right\}$ ($l=\operatorname{dim} \mathfrak{b}$), where $\lambda^{\prime}{ }_{i}$ s are linear forms which are mutually orthogonal with respect to the Killing form B. And the set P_{r} of all compact positive roots is

$$
\left\{\lambda_{i} \pm \lambda_{j} \mid 1 \leqq i \leqq j \leqq l\right\} .
$$

Let λ be a dominant integral form on \mathfrak{b}_{c}. Then $=m_{1} \lambda_{1}+m_{2} \lambda_{2}+\cdots$ $+m_{l} \lambda_{l}, m_{1} \geqq m_{2} \geqq \cdots \geqq m_{l} \geqq 0$, and $m^{\prime}{ }_{i}$ s are either all integers or all strict half integers. Put

$$
\begin{gathered}
\mathcal{E}_{2}=\left\{\eta=\sum_{i=1}^{l} \eta_{i} \lambda_{i} \mid \eta_{1} \geqq m_{1}+1 \geqq \eta_{2} \geqq \cdots \geqq \eta_{l} \geqq m_{l}+1,\right. \\
\left.\eta_{i} \equiv m_{i}(\bmod Z) \quad i=1,2, \cdots, l\right\}
\end{gathered}
$$

where Z is the set of all integers. Then we have the following formulas for any function $f \in C_{c}^{\infty}(G)$.

Theorem 2. 1) For any irreducible representation $\delta=\delta_{\eta}$ of K which has the highest weight $\eta \in \mathcal{E}_{2}$.

$$
\Theta_{\lambda+\rho}^{*}\left(f^{i}\right)=\left(\operatorname{trace} V_{s_{0}(\lambda+\rho)}\right)\left(f^{\delta}\right)
$$

where $s_{0}=s_{\lambda_{l}-\lambda_{l-1}} s_{\lambda_{l}-\lambda_{l-2}} \cdots s_{\lambda_{l}-\lambda_{1}}\left(\in W_{1}\right)$.
2) For the representation $\omega_{\lambda+\rho}$ corresponding to $\Theta_{\lambda+\rho}^{*}$

$$
\left[\omega_{\lambda+\rho} \mid K ; \delta\right]=1 \quad \text { for all } \delta=\delta_{\eta}\left(\eta \in \mathcal{E}_{\lambda}\right) .
$$

Remark. This result is known (T. Hirai [7], [8]). But we shall prove it by a different method from his. For the proof of Theorem 2, we shall state two lemmas.

Lemma 1. Let $\pi_{\lambda+\rho}$ be the same as in Theorem 1. Then

$$
\left[\pi_{\lambda+\rho} \mid K ; \delta\right]=0 \quad \text { for all } \delta=\delta_{\eta}\left(\eta \in \mathcal{E}_{2}\right)
$$

Proof. Let ν be a weight which occurs in $\pi_{\lambda+\rho} \mid K$ with respect to \mathfrak{b}_{c}. Then $\left(\nu+\rho_{t}, \nu+\rho_{t}\right)<\left(\eta+\rho_{t}, \eta+\rho_{t}\right)$ for all $\eta \in \mathcal{E}_{\lambda}$ where $\rho_{t}=\frac{1}{2} \sum_{\alpha \in P_{t}} \alpha$. So we have Lemma 1.

Lemma 2. Let $\delta=\delta_{x}$ be the irreducible representation of K with the highest weight $\kappa=\kappa_{1} \lambda_{1}+\cdots \kappa_{l} \lambda_{l}$ on \mathfrak{b}.

For the restriction $\delta \mid M$ of representation δ of K to M,

$$
\delta_{k} \mid M={ }_{k_{1} \geq \nu_{2} \geq \cdots \geq v \geq\left|x_{1}\right|} \pi_{\nu}^{\prime}
$$

where π_{ν}^{\prime} is the irreducible representation of M with highest the weight $\nu=\nu_{2} \lambda_{2}+\cdots+\nu_{l} \lambda_{l}$.

For the proof of Lemma 2, see [1].
Proof of Theorem 2. By Lemma 1, (trace $\left.\pi_{\lambda+\rho}\right)\left(f^{\delta}\right)=0$ for all $\delta=\delta_{\eta}\left(\eta \in \mathcal{E}_{\lambda}\right)$. By Lemma 2 and Frobenius reciprocity theorem applied to the induced representation $V_{s(\lambda+\rho)} \mid K$, we have

$$
\left[V_{s(\lambda+\rho)} \mid K ; \delta\right]=0 \quad \text { if } s_{0} \neq s \in W_{1}
$$

and

$$
\left[V_{s_{0}(\lambda+\rho)} \mid K ; \delta\right]=1 \quad \text { for any } \delta=\delta_{\eta}\left(\eta \in \mathcal{E}_{\lambda}\right)
$$

So we have Theorem 2.

References

[1] H. Boerner: Darstellungen von Gruppen. Berlin, Springer-Verlag (1955).
[2] Harish-Chandra: The plancherel formula for complex semi-simple Lie groups. Trans. Amer. Math. Soc., 76, 485-528 (1954).
[3] -: Discrete series for semi-simple Lie groups. I. Acta Math., 113, 241318 (1965).
[4] -: Two theorems on semi-simple Lie groups. Ann. of Math., 83, 74-128 (1966).
[5] - Discrete series for semi-simple Lie groups. II. Acta Math., 116, 1-111 (1966).
[6] I. M. Gelfand, M. I. Graev, and N. YA. Vilenkin: Generalized Functions. V. Acad. Press, pp. 395-398.
[7] T. Hirai: On irreducible representations of Lorentz group of n-th order. Proc. Japan Acad., 38, 258-262 (1962).
[8] -: The characters of irreducible representations of the Lorentz group of n-th order. Proc. Japan Acad., 41, 526-531 (1965).

