No. 1]

5. The Asymptotic Eigenvalue Distribution for Non-smooth Elliptic Operators

By Hideo TAMURA

Department of Mathematics, Nagoya University (Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1974)

1. Introduction.

The purpose of this note is to study the asymptotic eigenvalue distribution for the following equation

 $Au + ru = \lambda pu \qquad r \ge 0.$

Here A is a positive elliptic differential operator with constant coefficients defined on \mathbb{R}^n and p(x) is a positive function. When A is a homogeneous elliptic operator with a non-smooth p(x), the distribution of the eigenvalues of (1.1) was discussed in Birman and Solomjak [3], Birman and Borzov [4] and Rosenbljum [5]. In this note we will study the asymptotic distribution including the case that A is an inhomogeneous operator. The obtained results can be applied to the operator with a large parameter h > 0

 $Au - hp(x)u = \mu u.$

In fact, it was shown in Birman [2] that the number of negative eigenvalues less than r of equation (1.2) coincides with the number of eigenvalues less than h of equation (1.1).

Only the theorems and an outline of proofs are presented here and details will be published elsewhere.

2. Main Theorems.

Let $A(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$ be an elliptic operator with constant coefficients defined on R^n . We suppose that:

(i) $A(\xi) \ge 0$ for $\xi \in \mathbb{R}^n$;

(ii) $\xi = 0$ is the only zero of $A(\xi)$ of even order $m_0 \le m$.

The principal part of A(D) is denoted by $A_0(D)$.

We denote by K(l, a) (l>0, a>0) the set of functions p(x) which satisfy the following conditions:

(i) p(x) is decomposed into $p(x) = p_1(x) + p_2(x)$;

(ii) $p_1(x)$ is a positive smooth function with $\lim_{|x|\to\infty} |x|^t p_1(x) = a$;

(iii) $p_2(x)$ is a nonnegative function with compact support;

(iv)
$$p_2(x) \in L_p$$
, where $p=1$ if $m \ge n$ and $p > \frac{n}{m}$ if $m < n$.

Let $N_r(\lambda)$ be the number of eigenvalues less than λ of equation (1.1).

H. TAMURA

Theorem 1. Let A(D) be an elliptic operator satisfying the above assumption and suppose that r > 0 and that p(x) belongs to K(l, a). Then,

(i) if
$$l > m$$
,
 $N_r(\lambda) = (2\pi)^{-n} \omega_0 \int_{\mathbb{R}^n} p(x)^{n/m} dx \cdot \lambda^{n/m} + o(\lambda^{n/m}) \qquad \omega_0 = \text{meas} \left[\xi \mid A_0(\xi) \le 1\right]$
(ii) if $l = m$,
 $N_r(\lambda) = 2\pi)^{-n} \omega_0 \frac{S}{m} a^{n/m} \lambda^{n/m} \log \lambda + o(\lambda^{n/m} \log \lambda)$

where S is the surface measure of the n-1 dimensional unit sphere if $n \ge 2$ and S=2 if n=1.

(iii) if l < m,

$$N_r(\lambda) = (2\pi)^{-n} \frac{S}{n} \int_{\mathbb{R}^n} \frac{d\xi}{(A(\xi)+r)^{n/l}} a^{n/l} \lambda^{n/l} + o(\lambda^{n/l}).$$

Theorem 2 [homogeneous case]. Let A(D) be a homogeneous elliptic operator of order m defined on \mathbb{R}^n and suppose that m < n and that p(x) belongs to K(l, a). Then, if l > m,

$$N_0(\lambda) = (2\pi)^{-n} \omega_0 \int_{\mathbb{R}^n} p(x)^{n/m} dx \lambda^{n/m} + o(\lambda^{n/m}).$$

Remark. Theorem 2 was announced by Rosenbljum [5] without detailed proofs.

Theorem 3 [inhomogeneous case]. Let A(D) be an inhomogeneous elliptic operator satisfying the above assumption and suppose that p(x) belongs to K(l, a).

(i) The case m < n: if $m_0 < l < m$,

$$N_0(\lambda) = (2\pi)^{-n} \frac{S}{n} \int_{\mathbb{R}^n} A(\xi)^{-n/l} d\xi a^{n/l} \lambda^{n/l} + o(\lambda^{n/l}),$$

if l > m,

$$N_0(\lambda) = (2\pi)^{-n} \omega_0 \int_{\mathbb{R}^n} p(x)^{n/m} dx \lambda^{n/m} + o(\lambda^{n/m}).$$

(ii) The case $m \ge n$ if $m_0 < l < n \le m$,

$$N_0(\lambda) = (2\pi)^{-n} \frac{S}{n} \int_{\mathbb{R}^n} A(\xi)^{-n/l} d\xi a^{n/l} \lambda^{n/l} + o(\lambda^{n/l}).$$

Remark. Under proper conditions, Theorems 1, 2 and 3 can be extended to elliptic operators with variable coefficients.

3. Outline of the proofs.

Sketch of the proof of Theorem 1.

Here we consider only the case that m > n and l > n. The general case can be reduced to this case. For the sake of simplicity, we assume that p(x) is a positive smooth function and that p(x) belongs to

K(l, a). Eigenvalue problem (1.1) is transformed to the equivalent eigenvalue problem of the following form

(3.1) $p^{-1/2}(A+r)p^{-1/2}v = \lambda v.$

From the assumption that m > n and l > n, the operator $p^{1/2}(A+r)^{-1}p^{1/2}$ is a compact operator belonging to trace class. We get the trace formula

(3.2)
$$\sum_{j=1}^{\infty} \frac{1}{\mu_j + \lambda} = \int_{\mathbb{R}^n} p(x) A_{\lambda}(x, x) dx.$$

Here $\{\mu_j > 0\}_{j=1}^{\infty}$ are eigenvalues of equation (3.1) and $A_{\lambda}(x, y)$ is an integral kernel of the operator $(A + r + \lambda p)^{-1}$. Following the method developed in Agmon [1], we can estimate $A_{\lambda}(x, y)$ locally. We get

Lemma 1.

$$\left|A_{\lambda}(x,x)-(2\pi)^{-n}\int_{\mathbb{R}^{n}}(A(\xi)+r+\lambda p(x))^{-1}d\xi\right|$$

 $(3.3) \leq \varepsilon \cdot (1+\lambda p(x))^{(n/m)-1} + C(\varepsilon)p(x)^{1/l}(1+\lambda p(x))^{((n-1)/m)-1}$

where ε is any small positive number and $C(\varepsilon)$ is a constant independent of λ and x.

Combining the above Lemma and the Tauberian theorem of Hardy and Littlewood, we get Theorem 1.

Sketch of the proof of Theorem 2.

Here we suppose that $n > m > \frac{n}{2}$, l > m and that p(x) is a positive smooth function. We begin with the following integral equation (cf. Titchmarsh [6])

$$\frac{1}{\mu_j+\lambda}\varphi_j(x) = p^{1/2}(x) \int_{\mathbb{R}^n} K_\lambda(x,y) p^{1/2}(y)\varphi_j(y)dy$$

+
$$\frac{\lambda}{\mu_j+\lambda} p^{1/2}(x) \int_{\mathbb{R}^n} K_\lambda(x,y)(p(x)-p(y)) p^{-1/2}(y)\varphi_j(y)dy$$

$$\equiv a_j(x) + b_j(x) \qquad (j=1,2,\cdots)$$

where $\{\varphi_i(x)\}_{j=1}^{\infty}$ are eigenfunctions corresponding to eigenvalues $\{\mu_j\}_{j=1}^{\infty}$ and $K_{\lambda}(x, y) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{e^{i(x-y)\cdot\xi}}{A(\xi)+r+\lambda p(x)} d\xi$. Estimating $\int_{\mathbb{R}^n} \sum_j a_j^2(x) dx$ and $\int_{\mathbb{R}^n} \sum_j b_j^2(x) dx$, we get (3.4) $\sum_{j=1}^{\infty} \frac{1}{(\mu_i + \lambda)^2} = C\lambda^{n/m-2} + o(\lambda^{n/m-2}).$

Here the remainder estimate is uniform with respect to r. Combining (3.4) and Tauberian theorem, we obtain Theorem 2.

A similar argument can be applied to the proof of Theorem 3.

No. 1]

H. TAMURA

References

- [1] S. Agmon: On kernels, eigenvalues and eigenfunctions of operator related to elliptic problems. Comm. Pure. Appl. Math., 18, 627-663 (1965).
- M. Š. Birman: On the spectrum of singular boundary value problems. Math. Sb., 55, 125-174 (1961) (in Russian); A. M. S. Transl., 53, 23-80.
- [3] M.Š. Birman and M. E. Solomjak: Leading term in the asymptotic spectral formula for nonsmooth elliptic problems. Functional analysis and its application, 4, 1-13 (1970) (in Russian).
- [4] M. Š. Birman and V. V. Borzov: On the asymptotic of the discrete spectrum of some singular differential operators. Problem of Math. Phys., 5, 1-24 (1971) (in Russian).
- [5] G. V. Rosenbljum: The distribution of the discrete spectrum for singular differential operators. Dokl. Akad. Nauk SSSR, 202, 1012-1015 (1972) (in Russian); Soviet Math. Dokl., 13, 245-249 (1972).
- [6] E. C. Titchmarsh: Eigenfunction Expansions Associated with Second Order Differential Equations, Vol. II. Oxford University Press (1958).