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In this note all Riemannian manifolds which we deal are connected
and complete. Let M be a Riemannian manifold and p e M. C(p)
(respectively Q(p)) denotes the cut locus (respectively the first conjugate
locus) of p in M. For p, q e M, d(p, q) denotes the metric distance
between p and q. As is well known, the function i:MR [J {oz) defined
by i(p)’=minqec(p)d(p, q) is continuous and i(p) is called the injective
radius of exp where exp," T(M)M is the exponential mapping. If
M is compact, then under some conditions, several estimations of the
injective radius are obtained, see [3]. Recently in [4], Toponogov
asserted that if M is a noncompact Riemannian manifold and for all
tangent two plane a its sectional curvature K satisfy the inequality
0<K _<_ 2 then for all p e M

( 1 ) i(p) >= /__.
Furthermore he asserted that if M is noncompact and 0=<K.=<2 for all
a, then there exists a positive L such that for all p e M
( 2 ) i(p)>=L.

In this note, we give an another proof of estimation (1) by the
result of Cheeger and Gromoll [2] and we show that this method rema-
ins valid for some two dimensional noncompact Riemannian manifolds.

Every geodesic is always parametrized with respect to arclength.
A geodesic c" [0, oo)--.M is called a ray, if any segment of c is minimal.
A subset A of M is called totally convex, if for any p, q e A, any geo-
desic segment joining p and q is contained in A. Let A be a non-empty
closed totally convex subset of M. Then A is an imbedded topological
submanifold of M with totally geodesic interior and possibly non-
smooth boundary A, which might be empty, see [2]. Let M be a
noncompact manifold of nonnegative sectional curvature. Then the
following facts were also proved in [2]. Let C be a closed totally
convex subset of M. If 3C:/:i, we set

C {p e C d(p, C) a}
C:=C.

Then for any 0, C is totally convex and dim C<dim C. For
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p e M, there exists a family of compact totally convex sets Ct, t_>_0 such
that

1) t2__> t implies Ct C, and

Ct,= {q e Ct" d(q, Ct) >-_ t,.-- t}
in particular, Cti-- {q e C d(q, Ctg) 2-- 1},

2) ,_0 Ct=M,
3) p e Co and if C0:/:, then p e 3C0.

We set C(0)" Co and if C(0) :/:, we set C(1)" C(0). Inductively
we set C(i + 1)" C(i), if C(i) =/: 0. Then there exists integer k __> 0
such that 3C(k)-0. C(k) will be called a soul of M and denoted by S.
If M is homeomorphic to n-dimensional Euclidean space E, then any
soul of M is one point set, see [2].

Theorem 1. Let M be a noncompact n-dimensional Riemannian

manifold.
1) if 0 <K <__ for all tangent plane a, then

i(p) >= for all p e M,

2) if M is homeomorphic to E and O<=K<=2 where K is the
Gaussian curvature of M, then i(p)__>/,/-]- for all p e M.

Remark. If M is noncompact and 0<K, then following [2], M is
diffeomorphic to En. So 2) can be considered as a generalization of
1) for the case n-----2. We do not know whether 2) is true for all n>2.

Proof. For the present we may assume that M is diffeomorphic
to E and have the sectional curvature 0=<K=<. We assume that
there exist a point q0 e M such that i(qo) <//. As is mentioned above,
for q0 e M, there exists a family of compact totally convex sets
such that q0 e Co. Let S={s} be a soul of M obtained from {Ct}t_0. Co
is compact, so there exists a point q e Co such that

i(q)-min {i(q) q e Co}.
Then i(q) <=i(qo) 7c//-. By the assumption, sectional curvature
satisfies 0=<K =<2. So by the Theorem of Morse-Schoenberg and
Lemma 2 in [3; p. 226] there exists a geodesic loop -" [0,2i(q)]oM
such that r(O)-y(2i(q))=q. Since Co is totally convex we have.
,([0, 2i(q)]) Co. We show ’ is a closed geodesic. For, if
(2i(q)), then by Lemma 2 [3; p. 226], i(r(i(q)))<i(q). This contradicts
the choice of q. Thus ." [0,2i(q)]M extends the closed geodesic.. (--oo, oo)M having the period 2i(q). We take t>0. Then by
[2], the function +" (--c, c)-R defined by

+(s) "=d(y(s),aCt)
is concave. So +(s)=_l>O for all s e (--oz, c), because + is bounded.
Let c" [0, 1]M be a minimal geodesic from ,(0) to 3Ct, and X be the
parallel field along c such that X(0)=#(0). Then by the ComparisoI1
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Theorem of Berger, it follows that there exists )0, such that for
0_<_ s ., the curve c(u)" exp() sX(u) has length < with equality
holding for some s’)0 if and only if V" [0, l] [0, s’]M defines a flat
totally geodesic rectangle where V(u, s)’= c(u). For each s, the length
of the curve c is not longer than 1. So c,(1) C, for all s, 0__< s 6. On
the other hand, by means of a property of convex sets, c(1)e int C,.
This shows c(1) C, and hence length of the curve c is equal to I.
That is, for all s, 0s, V([0, 1] x [0, s]) is a flat totally geodesic sub-
manifold of M. Now, we assume that M is noncompact and 0K,
then M is diffeomorphic to E. Then above fact proves 1). We show
2) by contradiction. Let s e M be a soul of M, then i(s)=/. If
i(s)u/ , then by the argument in 1), there exists a geodesic loop

F" [0, 2i(s)]M such that (O)=y(2i(s))=s. Since {s} is totally convex,
([0, 2i(s)])(s). This is a contradiction. We assume that there exists
a point q0 e M such that i(qo)/. Let (Ct},z0 be a family of totally
convex set such that q0 e C0. We set A’={q e Co" i(q)=min,eco {i(r)}}.
Since A is compact, there exists a points q e A such that d(q,3Co)
=max{d(q,3Co)" q eA}. We set t’=d(q,3Co). Then i(q)gi(qo)
/. So there exists a closed geodesic " (--,)M such that
(O)=y(2i(q))=q. Since M is homeomorphic to E, 3C0 is homeomor-
phic to a circle. Hence, by the argument in 1) y((-, ))=C’
where C"=(q e Co" d(q,3Co)t}. Let s0 be the soul of M obtained
from C0. Then as is mentioned above, i(so) /. From this fact and
by the choice of q, we can find a point q e int C’ such that /
(q)i(q). We set t2 =d(q, 3C’). Let q2 e C’ t be a point such
that i(q2)=min{i(q);qeC’+t}. Clearly u/>i(q)i(q2)>i(q).
Then as in 1), there exists a closed geodesic " (-,)Msuch that
(O)=y2(2i(q2))=q2. By the same reason for ,r2((--, ))=3C+.
Hence, by the Theorem of Gauss-Bonnet, e get

where K is the Gaussian curvature of M and dv is the area element of
M. This equation means K0 on C’-C’+t. So, L(r)=L(r). This
contradicts the fact that L(r)<L(r). Q.E.D.

W. Klingenberg showed the following theorem, see [3; p. 227].
Theorem (W. Klingenberg). Let M be a compact simply connected

even dimensional Riemannian manifold and 0<K for all a. Then
for all p e M,

Let M be a 2-dimensional compact simply connected Riemannian
manifold having the Gaussian curvature 0 K 2. ThenM is homeomor-
phic to sphere S2. By the Comparison Theorem of Berger, just as the
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proof of the Theorem of Klingenberg, we can easily see i(p)>=//-
for all p e M. Summarizing above we get

Corollary. Let M be a simply connected 2-dimensional
Riemannian manifold and its Gaussian curvature satisfies O<=K2.
Then i(p) >=//- for all p e M.

We give an application of Theorem 1. Let M be a compact mani-
fold. Then its volume (we denote by Vol (M)) is finite. Conversely if
M have finite volume, then is M compact ? This is not true in general.

Theorem 2. Let M be an n-dimensional Riemannian manifold
and whose sectional curvature satisfies OK2 for all a or M be a
2-dimensional Riemannian manifold whose Gaussian curvature satisfies
O<=K<=2. Then M is compact if and only if Vol (M) is finite.

Proof. It sufficies to show that if M is noncompact and 0K
(or M is a 2-dimensional noncompact Riemannian manifold and 0gK
_<_) then Vol (M) is infinite. Let p e M. Then, since M is noncompact,
there exist a ray c’[0, c)-.M such that c(0)=p. Let M be an n-
dimensional Riemannian manifold with 0 K 2, then i(p) >= / /- for
all p e M. Let B(p) denotes the closed metric ball in M around p
with radius r. Sn(1//-) denotes the n-dimensional sphere in E/

of constant sectional curvature 2. Then by [1], Vol (B/-(p))
Vol (S(1//-]-)). We consider a family of closed balls {B/-z(c((2]
+ 1)//-)) ] 0, 1, 2, }. If ] :/: k, then B/(c((2] + 1)//-))
B/-z(c((2k+l)//-))=O, because c is a ray. Hence Vol(M)
_-> ,]_-0 Vol (B/(c(2]+ 1)u / /-]-)) Lim_ ]. Vol (S(1 //)) c.

If M is 2-dimensional and 0__<K, then by Classification Theorem
in [1], M is isometric to a cylinder or a flat open mSbius band or P
which is homeomorphic to E. If M is homeomorphic to E, then by
Theorem 1, i(p)>__//- for all p e M. And just as in above we see
Vol (M)-- c. Q.E.D.

Remark. If Toponogov’s result in [4] is true, then Theorem 2 is
true or all manifolds satisfying 0__<Kg2.
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