25. On the Bauer Simplexes and the Uniform Algebras

By Kazuo ANZAI Osaka University

(Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1974)

1. A Bauer simplex is a simplex whose set of extreme points is closed. We consider in this note when the state space of a uniform algebra is a Bauer simplex (Proposition 2). The result is applied to the tensor product $A_1 \otimes A_2$ of uniform algebras A_1 and A_2 , and we show that all the Gleason parts of at most one of A_1 and A_2 must be trivial if $A_1 \otimes A_2$ is u.r.m. (i.e. every maximal measure representing a complex homomorphim of $A_1 \otimes A_2$ is unique).

The author wishes to thank Professor O. Takenouchi for his helpful suggestions.

2. We shall make use of the definitions and the notions of [1]. Let K be a compact convex subset of some locally convex space and let $\mathcal{A}(K)$ denote the Banach space of real valued continuous affine functions on K. The set of extreme points of K is denoted by ∂K .

First we give a slight generalization of Bauer's theorem (cf., [1, p. 105]).

Proposition 1. Let K be a compact convex set and E a real complete locally convex space. Then K is a Bauer simplex if and only if every continuous map f of ∂K into E has an extension to a continuous affine map of K into E. In particular, if E is a Banach space, then this extension can be made norm preserving.

Proof. Assume that K is a Bauer simplex. Then ∂K is a closed subset of K. Hence $f(\partial K)$ is a compact subset of E. Since E is complete, the closed convex hull F of $f(\partial K)$ is a compact convex subset. By Bauer's theorem, every boundary measure annihilating $\mathcal{A}(K)$ is null, and from Alfsen [2, Corollary to Theorem A] there exists a continuous affine map \tilde{f} of K into F such that $\tilde{f}|_{\partial K} = f$. If E is a Banach space, then $||f||_{\partial K} = ||\tilde{f}||_{K}$. The converse statement is reduced to Bauer's theorem by considering a one-dimensional subspace of E. This completes the proof.

3. Let A be a uniform algebra on a compact Hausdorff space X. We denote by $\partial_A X$, $\Gamma(A)$, M(A) and S(A) the Choquet boundary, the Šilov boundary, the maximal ideal space and the state space of A respectively. A is called a Dirichlet algebra if $\operatorname{Re} A|_{\Gamma(A)}$ is dense in $C_R(\Gamma(A))$. For a part of the following Proposition we refer to Fuhr and Phelps [6, Corollary 6.3].

Proposition 2. Let A be a uniform algebra on a compact Hausdorff space X. Then A is a Dirichlet algebra if and only if S(A) is a Bauer simplex.

Proof. Suppose that S(A) is a Bauer simplex, then $\mathcal{A}(S(A))|_{\partial S(A)} = C_R(\partial S(A))$ and $\partial_A X = \Gamma(A)$ by Bauer's theorem. Hence $\operatorname{Re} A|_{\Gamma(A)}$ is dense in $C_R(\Gamma(A))$ since $\overline{\operatorname{Re} A}$ is isometrically isomorphic to $\mathcal{A}(S(A))$. The converse is trivial. The proof is complete.

It is immediate from Proposition 2 that S(A) is not a simplex if A is a logmodular algebra which is not Dirichlet (cf., [6, Proposition 6.4]).

4. Let A_1 and A_2 be uniform algebras on compact Hausdorff spaces X_1 and X_2 respectively. We denote by $A_1 \hat{\otimes} A_2$ the uniform closure as a function space on $X_1 \times X_2$ of algebraic tensor product $A_1 \otimes A_2$. Let $\mathcal{BA}(S(A_1) \times S(A_2))$ be the Banach space of continuous biaffine functions on $S(A_1) \times S(A_2)$. The state space of $\mathcal{BA}(S(A_1) \times S(A_2))$ is denoted by $S(A_1) \otimes S(A_2)$. Let Φ denote the natural embedding of Re $(A_1 \otimes A_2)$ into $\mathcal{BA}(S(A_1) \times S(A_2))$:

$$(\Phi(\operatorname{Re}(f\otimes g)))(x,y) = \operatorname{Re}(\langle f, x \rangle \langle g, y \rangle),$$

for
$$f \otimes g \in A_1 \otimes A_2$$
, $(x, y) \in S(A_1) \times S(A_2)$,

 Φ^* be the adjoint map of Φ . Let η be the canonical embedding of $S(A_1) \times S(A_2)$ into $S(A_1 \otimes A_2)$:

 $\eta(x,y)(f\otimes g) = \langle f,x \rangle \langle g,y \rangle \quad \text{for } f\otimes g \in A_1 \otimes A_2, (x,y) \in S(A_1) \times S(A_2).$

Theorem 3. Suppose that A_1 and A_2 are uniform algebras on compact Hausdorff spaces X_1 and X_2 respectively. Then $S(A_1 \otimes A_2)$ is affinely homeomorphic to $S(A_1) \otimes S(A_2)$ if

(i) $A_1 \otimes A_2$ is a Dirichlet algebra, or

(ii) $A_1 = C(X_1) \text{ or } A_2 = C(X_2).$

Proof. (i) If $A_1 \otimes A_2$ is a Dirichlet algebra, A_1 and A_2 are Dirichlet algebras (cf., [9, p. 144]). Hence Proposition 2 and Lazar [7] show that $S(A_1) \otimes S(A_2)$ is a simplex. On the other hand, it follows from Mochizuki [9, Theorem 1] and Namioka and Phelps [10, Theorem 2.3] that $\Phi^*(\partial(S(A_1) \otimes S(A_2))) = \partial S(A_1 \otimes A_2)$. Therefore $S(A_1) \otimes S(A_2)$ is a Bauer simplex and $\Phi^*(S(A_1) \otimes S(A_2)) = S(A_1 \otimes A_2)$. It remains only to show that Φ^* is one-to-one on $S(A_1) \otimes S(A_2)$. Let z_1 and z_2 be two distinct elements of $S(A_1) \otimes S(A_2)$. Then by Choquet-Meyer's theorem, there is a unique maximal measure μ_i on $S(A_1) \otimes S(A_2)$ which represents z_i (i=1,2). We have $\mu_1 \neq \mu_2$. Hence there exists a function $f \in C_R(\partial(S(A_1 \otimes A_2))$ such that $\int_{\partial S(A_2)} f d\mu_1 \circ \Phi^{*-1} \neq \int_{\partial S(A_1 \otimes A_2)} f d\mu_2 \circ \Phi^{*-1}$, because $\operatorname{supp}(\mu_i) \subset \partial(S(A_1)$ $\otimes S(A_2)$ (i=1,2). By hypothesis and Proposition 2, there exists a function $\tilde{f} \in \mathcal{A}(S(A_1 \otimes A_2))$ such that $\tilde{f}|_{\partial S(A_1 \otimes A_2)} = f$. Hence

$$\tilde{f}(\Phi^{*}(z_{1})) = \int \tilde{f}d\mu_{1} \circ \Phi^{*-1} = \int_{\partial S(A_{1}\hat{\otimes}A_{2})} fd\mu_{1} \circ \Phi^{*-1}$$

$$\approx \int_{\partial S(A_{1}\hat{\otimes}A_{2})} fd\mu_{2} \circ \Phi^{*-1} = \int \tilde{f}d\mu_{2} \circ \Phi^{*-1} = \tilde{f}(\Phi^{*}(z_{2})).$$

Thus Φ^* is one-to-one.

(ii) If $A_1 = C(X_1)$, then $\operatorname{Re} A_1 = C_R(X_1)$ and so $\operatorname{Re} (A_1 \otimes A_2) = \overline{\operatorname{Re} A_1 \otimes \operatorname{Re} A_2}$. Since $S(A_1)$ is Bauer simplex, we can prove that $\mathcal{A}(S(A_1)) \otimes \mathcal{A}(S(A_2))$ is dense in $\mathcal{B}\mathcal{A}(S(A_1) \times S(A_2))$, (cf., [10]). Hence Φ is an isometric isomorphism. Thus the proof is complete.

The following Corollary is evident.

Corollary. Let A_1 and A_2 be Dirichlet algebras on compact Hausdorff spaces X_1 and X_2 respectively. Then $A_1 \otimes A_2$ is a Dirichlet algebra if and only if $S(A_1 \otimes A_2)$ is affinely homeomorphic to $S(A_1)$ $\otimes S(A_2)$.

5. Let A be a uniform algebra on a compact Hausdorff space X. Then for $x \in S(A)$, we denote the minimal face which contains x by face (x). It was proved in [1, p. 122] that face $(x) = \bigcup_{\alpha \ge 1} D_{\alpha}(x)$, where $D_{\alpha}(x) = (\alpha x - (\alpha - 1)S(A)) \cap S(A)$. If we define a relation \approx on S(A) by agreeing that $x \approx y$ if and only if face (x) = face (y), then \approx is an equivalence relation. The equivalence classes of S(A) defined by the relation \approx are called the parts. We notice that

(*) $x \approx y$ if and only if $\sup\{|\log\langle u, x \rangle - \log\langle u, y \rangle| : u \in \text{Re } A, u > 0\} < \infty$ (cf., [4]). Let A_1 and A_2 be uniform algebras on compact Hausdorff spaces X_1 and X_2 respectively. Then we have the following

Lemma. Let x_i and y_i be elements of $S(A_i)$ (i=1,2). Then $\eta(x_1, x_2) \approx \eta(y_1, y_2)$ if and only if $x_1 \approx y_1$ and $x_2 \approx y_2$.

Proof. If $\eta(x_1, x_2) \approx \eta(y_1, y_2)$, then $x_1 \approx y_1$ and $x_2 \approx y_2$ since (*) and $u_1 \otimes 1$, $1 \otimes u_2 \in \operatorname{Re} (A_1 \otimes A_2)$ for any $u_1 \in \operatorname{Re} A_1$ and $u_2 \in \operatorname{Re} A_2$. For the converse, it is sufficient to prove that face $(\eta(x_1, x_2)) = \operatorname{face} (\eta(y_1, x_2))$ and face $(\eta(y_1, x_2)) = \operatorname{face} (\eta(y_1, y_2))$. We note that $D_\alpha(x_1) \supset D_\beta(x_1)$ generally for $\alpha \geq \beta \geq 1$. Then for any $z \in \operatorname{face} (\eta(x_1, x_2))$, there exist $\alpha \geq 1$, $z_1 \in S(A_1 \otimes A_2)$ and $x \in S(A_1)$ such that

$$z = \alpha \eta(x_1, x_2) - (\alpha - 1)z_1 \quad \text{and} \quad x_1 = \alpha y_1 - (\alpha - 1)x.$$

Hence $z = \alpha^2 \eta(y_1, x_2) - (\alpha^2 - 1) \left\{ \frac{\alpha}{\alpha + 1} \eta(x, x_2) + \frac{1}{\alpha + 1} z_1 \right\}.$ Since $\frac{\alpha}{\alpha + 1} \eta(x, x_2)$
 $+ \frac{1}{\alpha + 1} z_1 \in S(A_1 \widehat{\otimes} A_2)$, we have $z \in \text{face } (\eta(y_1, x_2))$. Thus face $(\eta(x_1, x_2))$
 $\subset \text{face } (\eta(y_1, x_2)).$ This completes the proof.

Since for any Gleason part P of M(A) there is a part P_0 of S(A) such that $P = P_0 \cap M(A)$, the above Lemma is a generalization of Mochizuki [9, Lemma 3].

We recall that a uniform algebra A is said u.r.m. if for each $x \in M(A)$ there is a unique representing measure for x supported on

No. 2]

 $\Gamma(A)$. Then we have the following theorem.

Theorem 4. If $A_1 \otimes A_2$ is u.r.m., then all Gleason parts for at least one of A_1 and A_2 must be trivial.

Proof. Assume that P_i is a non-trivial Gleason part of $M(A_i)$ (i=1,2). By Lemma, $P=\eta(P_1\times P_2)$ is a Gleason part of $M(A_1\hat{\otimes}A_2)$. On the other hand, it follows immediately from the hypothesis and $M(A_1\hat{\otimes}A_2)=\eta(M(A_1)\times M(A_2))$ [9, Theorem 2] that A_1 and A_2 are u.r.m. Hence by Wermer's embedding theorem, there exist homeomorphisms τ_1, τ_2 and τ of the open unit disk D onto the Gleason parts (P_1, d_1) , (P_2, d_2) and (P, d) respectively, where d_1, d_2 and d are the corresponding part metrics. Let $\eta(x_1, x_2), \eta(y_1, y_2)$ be elements of $\eta(P_1 \times P_2)$. Then $d(\eta(x_1, x_2), \eta(y_1, y_2))$

 $= \sup \{ |\log \langle u, \eta(x_1, x_2) \rangle - \log \langle u, \eta(y_1, y_2) \rangle | : u \in \operatorname{Re} (A_1 \widehat{\otimes} A_2), u > 0 \} \\ \ge \sup \{ |\log \langle u_1 \otimes \mathbf{1}, \eta(x_1, x_2) \rangle - \log \langle u_1 \otimes \mathbf{1}, \eta(y_1, y_2) \rangle | : u_1 \in \operatorname{Re} A_1, u_1 > 0 \} \\ = \sup \{ |\log \langle u_1, x_1 \rangle - \log \langle u_1, y_1 \rangle | : u_1 \in \operatorname{Re} A_1, u_1 > 0 \} \\ = d_1(x_1, y_1).$

Hence $2d \ge d_1 + d_2$ and so $(\tau_1^{-1} \times \tau_2^{-1}) \circ \tau$ is a bijective continuous map of D onto $D \times D$. This contradicts the invariance of the dimension. Therefore P_1 or P_2 must be trivial. The proof is complete.

Remark. It has been conjectured that if every Gleason part for A is trivial, then A = C(X). Wilken [13] proved the conjecture for $\Re(X)$ when X is a compact set in the plane. If this conjecture is true for any Dirichlet algebra, then we will be able to confirm by Theorem 4 that if $A_1 \otimes A_2$ is Dirichlet, then $A_1 = C(X_1)$ or $A_2 = C(X_2)$. (This conjecture is known to be false without any assumption on A by the counter examples of Cole [5] and Basener [3].)

References

- E. M. Alfsen: Compact Convex Sets and Boundary Integrals. Springer Verlag, Berlin (1971).
- [2] —: On the Dirichlet problem of the Choquet boundary. Acta Math., 120, 149-159 (1968).
- [3] R. F. Basener: An example concerning peak points. Notices Amer. Math. Soc., 18, 415-416 (1971).
- [4] H. S. Bear: Lectures on Gleason Parts. Springer-Verlag, Berlin (1970).
- [5] B. Cole: One Point Parts and the Peak Point Conjecture. Ph. D. dissertation, Yale University (1968).
- [6] R. Fuhr and R. R. Phelps: Uniqueness of complex representing measures on the Choquet boundary. J. Functional Analysis, 14, 1-27 (1973).
- [7] A. Lazar: Affine products of simplexes. Math. Scand., 22, 165-175 (1968).
- [8] G. Lumer: Analytic functions and Dirichlet problem. Bull. Amer. Math. Soc., 70, 98-104 (1964).
- [9] N. Mochizuki: The tensor product of function algebras. Tohoku Math. J., 17, 139-146 (1965).

- [10] I. Namioka and R. R. Phelps: Tensor products of compact convex sets. Pacific J. Math., 13, 469-480 (1969).
- [11] R. R. Phelps: Lectures on Choquets Theorem. Van Nostrand (1966).
 [12] E. L. Stout: The Theory of Uniform Algebras. Bogden & Quigley, Inc. Publishers (1971).
- [13] D. R. Wilken: Lebesgue measure of parts for R(X). Proc. Amer. Math. Soc., 18, 508-512 (1967).