25. On the Bauer Simplexes and the Uniform Algebras

By Kazuo Anzai
Osaka University
(Comm. by Kôsaku Yosida, m. J. A., Feb. 12, 1974)

1. A Bauer simplex is a simplex whose set of extreme points is closed. We consider in this note when the state space of a uniform algebra is a Bauer simplex (Proposition 2). The result is applied to the tensor product $A_{1} \hat{\otimes} A_{2}$ of uniform algebras A_{1} and A_{2}, and we show that all the Gleason parts of at most one of A_{1} and A_{2} must be trivial if $A_{1} \hat{\otimes} A_{2}$ is u.r.m. (i.e. every maximal measure representing a complex homomorphim of $A_{1} \hat{\otimes} A_{2}$ is unique).

The author wishes to thank Professor O. Takenouchi for his helpful suggestions.
2. We shall make use of the definitions and the notions of [1]. Let K be a compact convex subset of some locally convex space and let $\mathcal{A}(K)$ denote the Banach space of real valued continuous affine functions on K. The set of extreme points of K is denoted by ∂K.

First we give a slight generalization of Bauer's theorem (cf., [1, p. 105]).

Proposition 1. Let K be a compact convex set and E a real complete locally convex space. Then K is a Bauer simplex if and only if every continuous map f of ∂K into E has an extension to a continuous affine map of K into E. In particular, if E is a Banach space, then this extension can be made norm preserving.

Proof. Assume that K is a Bauer simplex. Then ∂K is a closed subset of K. Hence $f(\partial K)$ is a compact subset of E. Since E is complete, the closed convex hull F of $f(\partial K)$ is a compact convex subset. By Bauer's theorem, every boundary measure annihilating $\mathcal{A}(K)$ is null, and from Alfsen [2, Corollary to Theorem A] there exists a continuous affine map \tilde{f} of K into F such that $\left.\tilde{f}\right|_{\partial_{K}}=f$. If E is a Banach space, then $\|f\|_{\partial K}=\|\tilde{f}\|_{K}$. The converse statement is reduced to Bauer's theorem by considering a one-dimensional subspace of E. This completes the proof.
3. Let A be a uniform algebra on a compact Hausdorff space X. We denote by $\partial_{A} X, \Gamma(A), M(A)$ and $S(A)$ the Choquet boundary, the Silov boundary, the maximal ideal space and the state space of A respectively. A is called a Dirichlet algebra if $\left.\operatorname{Re} A\right|_{\Gamma(A)}$ is dense in $C_{R}(\Gamma(A))$.

For a part of the following Proposition we refer to Fuhr and Phelps [6, Corollary 6.3].

Proposition 2. Let A be a uniform algebra on a compact Hausdorff space X. Then A is a Dirichlet algebra if and only if $S(A)$ is a Bauer simplex.

Proof. Suppose that $S(A)$ is a Bauer simplex, then $\left.\mathcal{A}(S(A))\right|_{\partial S(A)}$ $=C_{R}(\partial S(A))$ and $\partial_{A} X=\Gamma(A)$ by Bauer's theorem. Hence $\left.\operatorname{Re} A\right|_{\Gamma(A)}$ is dense in $C_{R}(\Gamma(A))$ since $\overline{\operatorname{Re} A}$ is isometrically isomorphic to $\mathcal{A}(S(A))$. The converse is trivial. The proof is complete.

It is immediate from Proposition 2 that $S(A)$ is not a simplex if A is a logmodular algebra which is not Dirichlet (cf., [6, Proposition 6.4]).
4. Let A_{1} and A_{2} be uniform algebras on compact Hausdorff spaces X_{1} and X_{2} respectively. We denote by $A_{1} \hat{\otimes} A_{2}$ the uniform closure as a function space on $X_{1} \times X_{2}$ of algebraic tensor product $A_{1} \otimes A_{2}$. Let $\mathcal{B} \mathcal{A}\left(S\left(A_{1}\right) \times S\left(A_{2}\right)\right)$ be the Banach space of continuous biaffine functions on $S\left(A_{1}\right) \times S\left(A_{2}\right)$. The state space of $\mathscr{B} \mathcal{A}\left(S\left(A_{1}\right) \times S\left(A_{2}\right)\right)$ is denoted by $S\left(A_{1}\right) \otimes S\left(A_{2}\right)$. Let Φ denote the natural embedding of $\operatorname{Re}\left(A_{1} \hat{\otimes} A_{2}\right)$ into $\mathcal{B} \mathcal{A}\left(S\left(A_{1}\right) \times S\left(A_{2}\right)\right):$

$$
\begin{aligned}
& (\Phi(\operatorname{Re}(f \otimes g)))(x, y)=\operatorname{Re}(\langle f, x\rangle\langle g, y\rangle), \\
& \quad \text { for } f \otimes g \in A_{1} \otimes A_{2},(x, y) \in S\left(A_{1}\right) \times S\left(A_{2}\right),
\end{aligned}
$$

Φ^{*} be the adjoint map of Φ. Let η be the canonical embedding of $S\left(A_{1}\right) \times S\left(A_{2}\right)$ into $S\left(A_{1} \hat{\otimes} A_{2}\right)$: $\eta(x, y)(f \otimes g)=\langle f, x\rangle\langle g, y\rangle \quad$ for $f \otimes g \in A_{1} \otimes A_{2},(x, y) \in S\left(A_{1}\right) \times S\left(A_{2}\right)$.

Theorem 3. Suppose that A_{1} and A_{2} are uniform algebras on compact Hausdorff spaces X_{1} and X_{2} respectively. Then $S\left(A_{1} \hat{\otimes} A_{2}\right)$ is affinely homeomorphic to $S\left(A_{1}\right) \otimes S\left(A_{2}\right)$ if
(i) $A_{1} \otimes A_{2}$ is a Dirichlet algebra, or
(ii) $\quad A_{1}=C\left(X_{1}\right)$ or $A_{2}=C\left(X_{2}\right)$.

Proof. (i) If $A_{1} \hat{\otimes} A_{2}$ is a Dirichlet algebra, A_{1} and A_{2} are Dirichlet algebras (cf., [9, p. 144]). Hence Proposition 2 and Lazar [7] show that $S\left(A_{1}\right) \otimes S\left(A_{2}\right)$ is a simplex. On the other hand, it follows from Mochizuki [9, Theorem 1] and Namioka and Phelps [10, Theorem 2.3] that $\Phi^{*}\left(\partial\left(S\left(A_{1}\right) \otimes S\left(A_{2}\right)\right)\right)=\partial S\left(A_{1} \hat{\otimes} A_{2}\right)$. Therefore $S\left(A_{1}\right) \otimes S\left(A_{2}\right)$ is a Bauer simplex and $\Phi^{*}\left(S\left(A_{1}\right) \otimes S\left(A_{2}\right)\right)=S\left(A_{1} \hat{\otimes} A_{2}\right)$. It remains only to show that Φ^{*} is one-to-one on $S\left(A_{1}\right) \otimes S\left(A_{2}\right)$. Let z_{1} and z_{2} be two distinct elements of $S\left(A_{1}\right) \otimes S\left(A_{2}\right)$. Then by Choquet-Meyer's theorem, there is a unique maximal measure μ_{i} on $S\left(A_{1}\right) \otimes S\left(A_{2}\right)$ which represents $z_{i}(i=1,2)$. We have $\mu_{1} \neq \mu_{2}$. Hence there exists a function $f \in C_{R}\left(\partial\left(S\left(A_{1} \hat{\otimes} A_{2}\right)\right)\right.$ such that $\int_{\partial S\left(A_{1} \hat{\otimes} A_{2}\right)} f d \mu_{1} \circ \Phi^{*-1} \neq \int_{\partial S\left(A_{1} \hat{\otimes} A_{2}\right)} f d \mu_{2} \circ \Phi^{*-1}$, because $\operatorname{supp}\left(\mu_{i}\right) \subset \partial\left(S\left(A_{1}\right)\right.$ $\left.\otimes S\left(A_{2}\right)\right)(i=1,2) . \quad$ By hypothesis and Proposition 2, there exists a function $\tilde{f} \in \mathcal{A}\left(S\left(A_{1} \hat{\otimes} A_{2}\right)\right)$ such that $\left.\tilde{f}\right|_{\partial S\left(A_{1} \hat{\otimes} A_{2}\right)}=f$. Hence

$$
\begin{aligned}
\tilde{f}\left(\Phi^{*}\left(z_{1}\right)\right) & =\int \tilde{f} d \mu_{1} \circ \Phi^{*-1}=\int_{\partial S\left(A_{1} \hat{\otimes} A_{2}\right)} f d \mu_{1} \circ \Phi^{*-1} \\
& \neq \int_{\partial S\left(A_{1} \hat{\otimes} A_{2}\right)} f d \mu_{2} \circ \Phi^{*-1}=\int \tilde{f} d \mu_{2} \circ \Phi^{*-1}=\tilde{f}\left(\Phi^{*}\left(z_{2}\right)\right) .
\end{aligned}
$$

Thus Φ^{*} is one-to-one.
(ii) If $A_{1}=C\left(X_{1}\right)$, then $\operatorname{Re} A_{1}=C_{R}\left(X_{1}\right)$ and so $\overline{\operatorname{Re}\left(A_{1} \hat{\otimes} A_{2}\right)}$ $=\overline{\operatorname{Re} A_{1} \otimes \operatorname{Re} A_{2}} . \quad$ Since $S\left(A_{1}\right)$ is Bauer simplex, we can prove that $\mathcal{A}\left(S\left(A_{1}\right)\right) \otimes \mathcal{A}\left(S\left(A_{2}\right)\right)$ is dense in $\mathscr{B} \mathcal{A}\left(S\left(A_{1}\right) \times S\left(A_{2}\right)\right)$, (cf., [10]). Hence Φ is an isometric isomorphism. Thus the proof is complete.

The following Corollary is evident.
Corollary. Let A_{1} and A_{2} be Dirichlet algebras on compact Hausdorff spaces X_{1} and X_{2} respectively. Then $A_{1} \hat{\otimes} A_{2}$ is a Dirichlet algebra if and only if $S\left(A_{1} \hat{\otimes} A_{2}\right)$ is affinely homeomorphic to $S\left(A_{1}\right)$ $\otimes S\left(A_{2}\right)$.
5. Let A be a uniform algebra on a compact Hausdorff space X. Then for $x \in S(A)$, we denote the minimal face which contains x by face (x). It was proved in [1, p. 122] that face $(x)=\bigcup_{\alpha \geq 1} D_{\alpha}(x)$, where $D_{\alpha}(x)=(\alpha x-(\alpha-1) S(A)) \cap S(A)$. If we define a relation \approx on $S(A)$ by agreeing that $x \approx y$ if and only if face $(x)=$ face (y), then \approx is an equivalence relation. The equivalence classes of $S(A)$ defined by the relation \approx are called the parts. We notice that
(*) $\quad x \approx y$ if and only if $\sup \{|\log \langle u, x\rangle-\log \langle u, y\rangle|: u \in \operatorname{Re} A, u>0\}<\infty$ (cf., [4]). Let A_{1} and A_{2} be uniform algebras on compact Hausdorff spaces X_{1} and X_{2} respectively. Then we have the following

Lemma. Let x_{i} and y_{i} be elements of $S\left(A_{i}\right)(i=1,2)$. Then $\eta\left(x_{1}, x_{2}\right) \approx \eta\left(y_{1}, y_{2}\right)$ if and only if $x_{1} \approx y_{1}$ and $x_{2} \approx y_{2}$.

Proof. If $\eta\left(x_{1}, x_{2}\right) \approx \eta\left(y_{1}, y_{2}\right)$, then $x_{1} \approx y_{1}$ and $x_{2} \approx y_{2}$ since ($*$) and $u_{1} \otimes 1,1 \otimes u_{2} \in \operatorname{Re}\left(A_{1} \hat{\otimes} A_{2}\right)$ for any $u_{1} \in \operatorname{Re} A_{1}$ and $u_{2} \in \operatorname{Re} A_{2}$. For the converse, it is sufficient to prove that face $\left(\eta\left(x_{1}, x_{2}\right)\right)=$ face $\left(\eta\left(y_{1}, x_{2}\right)\right)$ and face $\left(\eta\left(y_{1}, x_{2}\right)\right)=$ face $\left(\eta\left(y_{1}, y_{2}\right)\right)$. We note that $D_{\alpha}\left(x_{1}\right) \supset D_{\beta}\left(x_{1}\right)$ generally for $\alpha \geqq \beta \geqq 1$. Then for any $z \in$ face $\left(\eta\left(x_{1}, x_{2}\right)\right)$, there exist $\alpha \geqq 1$, $z_{1} \in S\left(A_{1} \hat{\otimes} A_{2}\right)$ and $x \in S\left(A_{1}\right)$ such that

$$
z=\alpha \eta\left(x_{1}, x_{2}\right)-(\alpha-1) z_{1} \quad \text { and } \quad x_{1}=\alpha y_{1}-(\alpha-1) x .
$$

Hence $z=\alpha^{2} \eta\left(y_{1}, x_{2}\right)-\left(\alpha^{2}-1\right)\left\{\frac{\alpha}{\alpha+1} \eta\left(x, x_{2}\right)+\frac{1}{\alpha+1} z_{1}\right\}$. Since $\frac{\alpha}{\alpha+1} \eta\left(x, x_{2}\right)$ $+\frac{1}{\alpha+1} z_{1} \in S\left(A_{1} \hat{\otimes} A_{2}\right)$, we have $z \in$ face $\left(\eta\left(y_{1}, x_{2}\right)\right)$. Thus face $\left(\eta\left(x_{1}, x_{2}\right)\right)$ \subset face $\left(\eta\left(y_{1}, x_{2}\right)\right)$. This completes the proof.

Since for any Gleason part P of $M(A)$ there is a part P_{0} of $S(A)$ such that $P=P_{0} \cap M(A)$, the above Lemma is a generalization of Mochizuki [9, Lemma 3].

We recall that a uniform algebra A is said u.r.m. if for each $x \in M(A)$ there is a unique representing measure for x supported on
$\Gamma(A)$. Then we have the following theorem.
Theorem 4. If $A_{1} \hat{\otimes} A_{2}$ is u.r.m., then all Gleason parts for at least one of A_{1} and A_{2} must be trivial.

Proof. Assume that P_{i} is a non-trivial Gleason part of $M\left(A_{i}\right)$ $(i=1,2)$. By Lemma, $P=\eta\left(P_{1} \times P_{2}\right)$ is a Gleason part of $M\left(A_{1} \hat{\otimes} A_{2}\right)$. On the other hand, it follows immediately from the hypothesis and $M\left(A_{1} \hat{\otimes} A_{2}\right)=\eta\left(M\left(A_{1}\right) \times M\left(A_{2}\right)\right)$ [9, Theorem 2] that A_{1} and A_{2} are u.r.m. Hence by Wermer's embedding theorem, there exist homeomorphisms τ_{1}, τ_{2} and τ of the open unit disk D onto the Gleason parts (P_{1}, d_{1}), $\left(P_{2}, d_{2}\right)$ and (P, d) respectively, where d_{1}, d_{2} and d are the corresponding part metrics. Let $\eta\left(x_{1}, x_{2}\right), \eta\left(y_{1}, y_{2}\right)$ be elements of $\eta\left(P_{1} \times P_{2}\right)$. Then

$$
\begin{aligned}
& d\left(\eta\left(x_{1}, x_{2}\right), \eta\left(y_{1}, y_{2}\right)\right) \\
& \quad=\sup \left\{\left|\log \left\langle u, \eta\left(x_{1}, x_{2}\right)\right\rangle-\log \left\langle u, \eta\left(y_{1}, y_{2}\right)\right\rangle\right|: u \in \operatorname{Re}\left(A_{1} \hat{\otimes} A_{2}\right), u>0\right\} \\
& \quad \geqq \sup \left\{\left|\log \left\langle u_{1} \otimes 1, \eta\left(x_{1}, x_{2}\right)\right\rangle-\log \left\langle u_{1} \otimes 1, \eta\left(y_{1}, y_{2}\right)\right\rangle\right|: u_{1} \in \operatorname{Re} A_{1}, u_{1}>0\right\} \\
& \quad=\sup \left\{\left|\log \left\langle u_{1}, x_{1}\right\rangle-\log \left\langle u_{1}, y_{1}\right\rangle\right|: u_{1} \in \operatorname{Re} A_{1}, u_{1}>0\right\} \\
& \quad=d_{1}\left(x_{1}, y_{1}\right) .
\end{aligned}
$$

Hence $2 d \geqq d_{1}+d_{2}$ and so $\left(\tau_{1}^{-1} \times \tau_{2}^{-1}\right) \circ \tau$ is a bijective continuous map of D onto $D \times D$. This contradicts the invariance of the dimension. Therefore P_{1} or P_{2} must be trivial. The proof is complete.

Remark. It has been conjectured that if every Gleason part for A is trivial, then $A=C(X)$. Wilken [13] proved the conjecture for $\mathcal{R}(X)$ when X is a compact set in the plane. If this conjecture is true for any Dirichlet algebra, then we will be able to confirm by Theorem 4 that if $A_{1} \otimes A_{2}$ is Dirichlet, then $A_{1}=C\left(X_{1}\right)$ or $A_{2}=C\left(X_{2}\right)$. (This conjecture is known to be false without any assumption on A by the counter examples of Cole [5] and Basener [3].)

References

[1] E. M. Alfsen: Compact Convex Sets and Boundary Integrals. Springer Verlag, Berlin (1971).
[2] -: On the Dirichlet problem of the Choquet boundary. Acta Math., 120, 149-159 (1968).
[3] R. F. Basener: An example concerning peak points. Notices Amer. Math. Soc., 18, 415-416 (1971).
[4] H. S. Bear: Lectures on Gleason Parts. Springer-Verlag, Berlin (1970).
[5] B. Cole: One Point Parts and the Peak Point Conjecture. Ph. D. dissertation, Yale University (1968).
[6] R. Fuhr and R. R. Phelps: Uniqueness of complex representing measures on the Choquet boundary. J. Functional Analysis, 14, 1-27 (1973).
[7] A. Lazar: Affine products of simplexes. Math. Scand., 22, 165-175 (1968).
[8] G. Lumer: Analytic functions and Dirichlet problem. Bull. Amer. Math. Soc., 70, 98-104 (1964).
[9] N. Mochizuki: The tensor product of function algebras. Tohoku Math. J., 17, 139-146 (1965).
[10] I. Namioka and R. R. Phelps: Tensor products of compact convex sets. Pacific J. Math., 13, 469-480 (1969).
[11] R. R. Phelps: Lectures on Choquets Theorem. Van Nostrand (1966).
[12] E. L. Stout: The Theory of Uniform Algebras. Bogden \& Quigley, Inc. Publishers (1971).
[13] D. R. Wilken: Lebesgue measure of parts for $R(X)$. Proc. Amer. Math. Soc., 18, 508-512 (1967).

