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On the Bauer Simplexes and the Uniform Algebras
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1. A Bauer simplex is a simplex whose set of extreme points
is closed. We consider in this note when the state space of a
uniform algebra is a Bauer simplex (Proposition 2). The result is
applied to the tensor product A)A of uniform .algebras A and A.,
and we show that all the Gleason parts of at most one of A and A
must be trivial if AA is u.r.m. (i.e. every maximal measure repre-
senting a complex homomorphim of AA is unique).

The author wishes to thank Professor O. Takenouchi for his help-
ful suggestions.

2. We shall make use of the definitions and the notions of [1].
Let K be a compact convex subset of some locally convex space and let
(K) denote the Banach space of real valued continuous affine func-
tions on K. The set of extreme points of K is denoted by K.

First we give a slight generalization of Bauer’s theorem (cf., [1,
p. 105]).

Proposition 1. Let K be a compact convex set and E a real com-
plete locally convex space. Then K is a Bauer simplex if and only if
every continuous map f of 3K into E has an extension to a continuous
affine map of K into E. In particular, if E is a Banach space, then
this extension can be made norm preserving.

Proof. Assume that K is a Bauer simplex. Then 3K is a closed
subset of K. Hence f(3K) is a compact subset of E. Since E is com-
plete, the closed convex hull F of f(3K) is a compact convex subset.
By Bauer’s theorem, every boundary measure annihilating (K) is
null, and from Alfsen [2, Corollary to Theorem A] there exists a con-
tinuous affine map f of K into F such that fl---f. If E is a Banach
space, then f I1-II f I1. The converse statement is reduced to Bauer’s
theorem by considering a one-dimensional subspace of E. This com-
pletes the proof.

3. Let A be a uniform algebra on a compact Hausdorff space X.
We denote by 3X, F(A), M(A) and S(A) the Choquet boundary, the
Silov boundary, the maximal ideal space and the state space of A
respectively. A is called a Dirichlet algebra if Re A Ir() is dense in
C(F(A)).
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For a part of the following Proposition we refer to Fuhr and
Phelps [6, Corollary 6.3].

Proposition 2. Let A be a uniform algebra on a compact
Hausdorff space X. Then A is a Dirichlet algebra if and only if S(A)
is a Bauer simplex.

Proof. Suppose that S(A) is a Bauer simplex, then (S(A))Is()
--C(aS(A)) and 3X--F(A) by Bauer’s theorem. Hence ReAIr()is
dense in C(F(A)) since Re A is isometrically isomorphic to (S(A)).
The converse is trivial. The proof is complete.

It is immediate from Proposition 2 that S(A) is not a simplex if A
is a logmodular algebra which is not Dirichlet (cf., [6, Proposition
6.4]).

4. Let A and A2 be uniform algebras on compact Hausdorff
spaces X and X2 respectively. We denote byAA2 the uniform closure
as a function space on X X2 of algebraic tensor product A(R)A2. Let
(S(A) S(A2)) be the Banach space of continuous biaffine functions
on S(A)S(A2). The state space of _(S(A)S(A2)) is denoted by

S(A)(R)S(A2). Let denote the natural embedding of Re (A@A2) into
(S(A) S(A))

((Re (f(R)g)))(x, y)=Re ((f x}(g, y}),
for f(R)g e AIA2, (x, y) e S(A1) S(A2),

* be the adjoint map of . Let V be the canonical embedding of
S(A) S(A) into S(A)A)"
(x, y)(f(R)g)-= (f x}(g, y} for f(R)g e At(R)A2, (x, y) e S(AI) S(A2).

Theorem :. Suppose that A and A2 are uniform algebras on com-
pact Hausdorff spaces X1 and X2 respectively. Then S(AIA2) is affinely
homeomorphic to S(A)(R)S(A2) if

( i ) A(R)A2 is a Dirichlet algebra, or
(ii) A=C(X) or A2=C(X).
Proof. (i) If AA2 is a Dirichlet algebra, A and A. are Dirichlet

algebras (cf., [9, p. 144]). Hence Proposition 2 and Lazar [7] show
that S(A)(R)S(A2) is a simplex. On the other hand, it follows from
Mochizuki [9, Theorem 1] and Namioka and Phelps [10, Theorem 2.3]
that *(3(S(A)(R)S(A2)))=3S(AA2). Therefore S(A)(R)S(A2) is a Bauer
simplex and *(S(A)(R)S(A2))=S(A)A2). It remains only to show that

* is one-to-one on S(A)(R)S(A2). Let z and z2 be two distinct elements
of S(A)(R)S(A2). Then by Choquet-Meyer’s theorem, there is a unique
maximal measure on S(A)(R)S(A2) which represents z (i= 1, 2). We
have 4:Z2. Hence there exists a function f C(3(S(A)A2)) such

that .[s(,&)fd/ *-.[S(AA)fd[&oO*- because supp (/) 3(S(A)

S(A2)) (i--1,2). By hypothesis and Proposition 2, there exists a
function f e (S(A)A)) such that fls(,.)=f Hence
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S(AAu)

OS(AA)

Thus * is one-to-one.
(ii) If A=C(X), then ReA=C,(X) and so Re(AA)

=Re A@Re A. Since S(AI) is Bauer simplex, we can prove that
(S(A1))@(S(A)) is dense in 2g(S(A)S(A)), (cf., [10]). Hence

is an isometric isomorphism. Thus the proof is complete.
The following Corollary is evident.
Corollary. Let A and A be Dirichlet algebras on compact

Hausdorff spaces X and X respectively. Then AA is a Dirichlet
algebra if and only if S(AA) is anely homeomorphic to S(A)
@S(A).

5. Let A be a uniform algebra on a compact Hausdorff space X.
Then for x e S(A), we denote the minimal face which contains x by
face (x). It was proved in [1, p. 122] that ace (x)=. D.(x), where
D.(x)=(ax--(a-1)S(A))S(A). If we define a relation on S(A) by
agreeing that xy i and only if ace (x)= face (y), then is an
equivalence relation. The equivalence classes of S(A)defined by the
relation z are called the parts. We notice that
(.) x y i and only i sup {[ log (u, x}-- log (u, y}[" u e Re A, u> 0}
(cf., [4]). Let A and A be uniform algebras on compact Hausdorff
spaces X and X respectively. Then we have the following

Lemma. Let x and y be elements of S(A) (i=1,2). Then
(x,x)z(y, y) if and only if xy and xy.

Proof. If V(x,x)(y,y), then xy and xy since (.) and
u@l, l@u e Re (AA) for any u e Re A and u e Re A. For the
converse, it is sufficient to prove that face ((x, x))=face ((y, x)) and
ace ((y, x))=2ace ((y, y)). We note that D.(x)D(x) generally
or afll. Then for any z eface((x,x)), there exist

z e S(AA) and x e S(A) such that
z=a(x,x)-(a-1)z and x=ay-(a-1)x.

Hence z=(yl’x)--(--l){+ 1
(x’ x) + 1 }a+ z Since

a+ 1
v(x’ x)

1 S(AA) we have z e face ((y x)). Thus ace ((x, x))

face ((y, x)). This completes the proof.
Since for any Gleason part P o M(A) there is a part Po of S(A)

such that P=PoM(A), the above Lemma is a generalization
Mochizuki [9, Lemma 3].

We recall that a uniform algebra A is said u.r.m, if for each
x e M(A) there is a unique representing measure or x supported on



No. 2] Bauer Simplexes and Uniform Algebras 117

F(A). Then we have the ollowing theorem.
Theorem 4. If AA is u.r.m., then all Gleason parts for at

least one of A1 and A2 must be trivial.

Proof. Assume that P is a non-trivial Gleason part of M(A)
(i--1,2). By Lemma, P--(PIxP2) is a Gleason part o M(A)A2).
On the other hand, it ollows immediately rom the hypothesis and
M(A)A)-(M(A) x M(A)) [9, Theorem 2] that A and A are u.r.m.
Hence by Wermer’s embedding theorem, there exist homeomorphisms
r, r. and r o the open unit disk D onto the Gleason parts (P, d),
(P, d) and (P, d) respectively, where d, d and d are the corresponding
part metrics. Let ](x, x), ](y, y) be elements of ](P x P). Then

d((x, x2), (y, y))
--sup {llog (u, (x, x)}--log (u,
_>_sup {llog (u(R)l, (x, x2)}-- log (u(R)l,7(y, Y2)}I" u e Re n, u0}
=sup {llog (u, x}--log (u, Y}I" u e Re A, u0}
d(x, y).

Hence 2d=>d+ d2 and so (r r;) r is a bijective continuous map of
D onto DD. This contradicts the invariance of the dimension.
Therefore P or P2 must be trivial. The proof is complete.

Remark. It has been conjectured that if every Gleason part for
A is trivial, then A=C(X). Wilken [13] proved the conjecture for
(X) when X is a compact set in the plane. If this conjecture is true
for any Dirichlet algebra, then we will be able to confirm by Theorem
4 that if A(R)A2 is Dirichlet, then A=C(X) or A2=C(X2). (This con-
jecture is known to be false without any assumption on A by the
counter examples of Cole [5] and Basener [3].)
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